Dynamics of Rigid Clusters of Charged Particles

  • Tarek I. Zohdi
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

As the next level of complexity beyond the dynamics of a single particle, we consider rigid clusters of such particles. In this chapter, we consider the cluster to already be formed, with particles rigidly bound together by either mechanical, chemical or electromagnetic bonds.

Keywords

Single Particle Position Vector Inertia Tensor Charged Cluster Instantaneous Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arbelaez, D., Zohdi, T. I., & Dornfeld, D. (2008). Modeling and simulation of material removal with particulate flow. Computational Mechanics, 42, 749–759.MATHCrossRefGoogle Scholar
  2. 2.
    Arbelaez, D., Zohdi, T. I., & Dornfeld, D. (2009). On impinging near-field granular jets. International Journal for Numerical Methods in Fluids Google Scholar
  3. 3.
    Ciampini, D., Spelt, J. K., & Papini, M. (2003). Simulation of interference effects in particle streams following impact with a flat surface. Part I. Theory and analysis. Wear, 254, 237–249.CrossRefGoogle Scholar
  4. 4.
    Ciampini, D., Spelt, J. K., & Papini, M. (2003). Simulation of interference effects in particle streams following impact with a flat surface. Part II. Parametric study and implications for erosion testing and blast cleaning. Wear, 254, 250–264.CrossRefGoogle Scholar
  5. 5.
    Fish, J. (2006). Bridging the scales in nano engineering and science. Journal of Nanoparticle Research, 8, 577–594.CrossRefGoogle Scholar
  6. 6.
    Frenklach, M., & Carmer, C. S. (1999). Molecular dynamics using combined quantum & empirical forces: Application to surface reactions. Advances in Classical Trajectory Methods, 4, 27–63.Google Scholar
  7. 7.
    Ghobeity, A., Krajac, T., Burzynski, T., Papini, M., & Spelt, J. K. (2008). Surface evolution models in abrasive jet micromachining. Wear, 264, 185–198.CrossRefGoogle Scholar
  8. 8.
    Ghobeity, A., Spelt, J. K., & Papini, M. (2008). Abrasive jet micro-machining of planar areas and transitional slopes. Journal of Micromechanics and Microengineering, 18, 055014.CrossRefGoogle Scholar
  9. 9.
    Ghosh, S., Valiveti, D. M., Harris, S. H., & Boileau, J. (2006). Microstructure characterization based domain partitioning as a pre-processor to multi-scale modeling of cast Aluminum alloys. Modelling and Simulation in Material Science and Engineering, 14, 1363–1396.CrossRefGoogle Scholar
  10. 10.
    Gomes-Ferreira, C., Ciampini, D., & Papini, M. (2004). The effect of inter-particle collisions in erosive streams on the distribution of energy flux incident to a flat surface. Tribology International, 37, 791–807.CrossRefGoogle Scholar
  11. 11.
    Haile, J. M. (1992). Molecular dynamics simulations: Elementary methods. New York: Wiley.Google Scholar
  12. 12.
    Hase, W. L. (1999). Molecular dynamics of clusters, surfaces, liquids, and interfaces. Advances in classical trajectory methods. (Vol. 4). Stamford: JAI Press.Google Scholar
  13. 13.
    Jackson, J. D. (1998). Classical electrodynamics (3rd ed.). New York: Wiley.Google Scholar
  14. 14.
    Luo, L., & Dornfeld, D. A. (2001). Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Transactions on Semiconductor Manufacturing, 14(2), 112–133.Google Scholar
  15. 15.
    Luo, L., & Dornfeld, D. A. (2003). Material removal regions in chemical mechanical planarization for sub-micron integration for sub-micron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area. IEEE Transactions on Semiconductor Manufacturing, 16, 45–56.CrossRefGoogle Scholar
  16. 16.
    Luo, L., & Dornfeld, D. A. (2003). Effects of abrasive size distribution in chemical-mechanical planarization: modeling and verification. IEEE Transactions on Semiconductor Manufacturing, 16, 469–476.CrossRefGoogle Scholar
  17. 17.
    Luo, L., & Dornfeld, D. A. (2004). Integrated modeling of chemical mechanical planarization of sub-micron IC fabrication. New York: Springer.Google Scholar
  18. 18.
    Moelwyn-Hughes, E. A. (1961). Physical Chemistry. New York: Pergamon.Google Scholar
  19. 19.
    Rapaport, D. C. (1995). The Art of Molecular Dynamics Simulation. Cambridge: Cambridge University Press.Google Scholar
  20. 20.
    Rechtsman, M., Stillinger, F. H., & Torquato, S. (2005). Optimized interactions for targeted self-assembly: Application to honeycomb lattice. Physical Review Letters, 95, 228301.CrossRefGoogle Scholar
  21. 21.
    Rechtsman, M., Stillinger, F. H., & Torquato, S. (2006). Designed interaction potentials via inverse methods for self-assembly. Physical Review E, 73, 011406.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schlick, T. (2000). Molecular modeling & simulation: An interdisciplinary guide. New York: Springer.Google Scholar
  23. 23.
    Stillinger, F. H., & Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Physical Review B, 31, 5262–5271.CrossRefGoogle Scholar
  24. 24.
    Tersoff, J. (1988). Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters, 61, 2879–2882.CrossRefGoogle Scholar
  25. 25.
    Torquato, S. (2002). Random heterogeneous materials: Microstructure and macroscopic properties. New York: Springer.MATHGoogle Scholar
  26. 26.
    Torquato, S. (2009). Inverse optimization techniques for targeted self-assembly. Soft Matter, 5, 1157.CrossRefGoogle Scholar
  27. 27.
    Zohdi, T. I. (2002). An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids. Internatioanl Journal for Numerical Methods in Engineering, 53, 1511–1532.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Zohdi, T. I. (2003). Genetic design of solids possessing a random-particulate microstructure. PTRS: Mathematical Physical and Engineering Sciences, 361(1806), 1021–1043.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Zohdi, T. I. (2003). On the compaction of cohesive hyperelastic granules at finite strains. Proceedings of the Royal Society, 454(2034), 1395–1401.Google Scholar
  30. 30.
    Zohdi, T. I. (2003). Computational design of swarms. Internatioanl Journal for Numerical Methods and Engineering, 57, 2205–2219.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Zohdi, T. I. (2003). Constrained inverse formulations in random material design. Computational Methods in Applied Mechanics and Engineering. 1–20 192(28–30), 18, 3179–3194.Google Scholar
  32. 32.
    Zohdi, T. I. (2004). Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Computational Methods in Applied Mechanics and Engineering, 193(6–8), 679–699.MATHCrossRefGoogle Scholar
  33. 33.
    Zohdi, T. I. (2004). Modeling and direct simulation of near-field granular flows. The International Journal of Solids Structures, 42(2), 539–564.Google Scholar
  34. 34.
    Zohdi, T. I. (2004). A computational framework for agglomeration in thermo-chemically reacting granular flows. Proceedings of the Royal Society, 460(2052), 3421–3445.Google Scholar
  35. 35.
    Zohdi, T. I. (2005). Charge-induced clustering in multifield particulate flow. International Journal of Numerical Methods and Engineering, 62(7), 870–898.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Zohdi, T. I. (2006). Computation of the coupled thermo-optical scattering properties of random particulate systems. Computational Methods in Applied Mechanics and Engineering, 195, 5813–5830.MATHCrossRefGoogle Scholar
  37. 37.
    Zohdi, T. I. (2007). Computation of strongly coupled multifield interaction in particle-fluid systems. Computational Methods in Applied Mechanics and Engrineering, 196, 3927–3950.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Zohdi, T. I. (2007). Particle collision and adhesion under the influence of near-fields. Journal of Mechanics of Materials and Structures, 2(6), 1011–1018.CrossRefGoogle Scholar
  39. 39.
    Zohdi, T. I. (2007). Introduction to the modeling and simulation of particulate flows. Society for Industrial and Applied Mathematics Google Scholar
  40. 40.
    Zohdi, T. I. (2008). On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. International Journal of Numerical Methods in Engineering, 76, 1250–1279.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Zohdi, T. I. (2009). Mechanistic modeling of swarms. Computational Methods in Applied Mechanics and Engineering, 198(21–26), 2039–2051.MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Zohdi, T. I. (2010). Charged wall-growth in channel-flow. International Journal of Engineering Sciences, 48, 15–20.CrossRefGoogle Scholar
  43. 43.
    Zohdi, T. I. (2010). On the dynamics of charged electromagnetic particulate jets. Archieves of Computational Methods in Engineering, 17(2), 109–135.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zohdi, T. I. (2011). Dynamics of clusters of charged particulates in electromagnetic fields. International Journal of Numerical Methods in Engineering, 85, 1140–1159.MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Zohdi, T. I., & Wriggers, P. (2008). Introduction to computational micromechanics, Second reprinting. New York: Springer.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Tarek I. Zohdi
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations