Scaffolding Collaborative Learning Opportunities: Integrating Microworld Use and Argumentation

  • Toby Dragon
  • Bruce M. McLaren
  • Manolis Mavrikis
  • Eirini Geraniou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7138)

Abstract

This paper presents our research efforts to support students’ collaborative process when learning mathematics and science as they interact with microworlds and engage in discussions and structured arguments. The system provides students with an environment to explore challenging problems and encourages them to collaborate using a discussion tool to argue and share their rationales and insights using specific examples from microworlds. The challenge of providing useful analysis in such a situation is to recognize, across the learning environment as a whole (both microworld and discussion tool), situations where students need support, and then to make the learners aware of these situations in a productive manner. We present a use case that demonstrates how students work within the system and how we envision the system will provide support. We conclude that the analysis and support that we propose has the potential to enhance the benefits of a combined system and offer more support than a system focused on the individual tools separately.

Keywords

Collaboration intelligent support microworlds argumentation discussion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Healy, L., Kynigos, C.: Charting the microworld territory over time: design and construction in mathematics education. ZDM 42(1), 63–76 (2010)CrossRefGoogle Scholar
  2. 2.
    Noss, R., Hoyles, C.: Windows on mathematical meanings: Learning cultures and computers. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  3. 3.
    Scardamalia, M., Bereiter, C.: Computer support for knowledge-building communities. Journal of the Learning Sciences 3(3), 265–283 (1993)CrossRefGoogle Scholar
  4. 4.
    Stahl, G.: Group cognition: Computer support for building collaborative knowledge. MIT Press, Cambridge (2006)Google Scholar
  5. 5.
    Scheuer, O., Loll, F., Pinkwart, N., McLaren, B.M.: Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning 5(1), 43–102 (2010)CrossRefGoogle Scholar
  6. 6.
    Tsovaltzi, D., Rummel, N., McLaren, B.M., Pinkwart, N., Scheuer, O., Harrer, A., Braun, I.: Extending a virtual chemistry laboratory with a collaboration script to promote conceptual learning. International Journal of Technology Enhanced Learning 2(1/2), 91–110 (2010)CrossRefGoogle Scholar
  7. 7.
    Dragon, T., Woolf, B.P., Murray, T.: Intelligent Coaching for Collaboration in Ill-Defined Domains. Poster Paper. In: Proceedings of the 14th International Conference of Artificial Intelligence in Education, AIED 2009. Brighton, UK (2009) Google Scholar
  8. 8.
    Mor, Y., Tholander, J., Holmberg, J.: Designing for constructionist web-based knowledge building. In: The 10th Computer Supported Collaborative Learning Conference (CSCL 2005): The Next 10 Years, pp. 450–459. Lawrence Erlbaum Associates, Taipei (2005)Google Scholar
  9. 9.
    Kahn, K.: ToonTalk – An Animated Programming Environment for Children. In: Proceedings of the National Educational Computing Conference, Baltimore, Maryland (June 1995); Extended version in the Journal of Visual Languages and Computing (June 1996)Google Scholar
  10. 10.
    Mor, Y., Noss, R., Hoyles, C., Kahn, K., Simpson, G.: Designing to see and share structure in number sequences. International Journal for Technology in Mathematics Education 13(2), 65–78 (2006)Google Scholar
  11. 11.
    Noss, R., Hoyles, C., Mavrikis, M., Geraniou, E., Gutierrez-Santos, S., Pearce, D.: Broadening the sense of ‘dynamic’: a microworld to support students’ mathematical generalisation. Special Issue of ZDM: Transforming Mathematics Education Through the Use of Dynamic Mathematics Technologies 41(4), 493–503 (2009)Google Scholar
  12. 12.
    Mavrikis, M., Noss, R., Hoyles, C., Geraniou, E.: Sowing the seeds of algebraic generalisation: designing epistemic affordances for an intelligent microworld. In: Noss, R., DiSessa, A. (eds.) Special Issue on Knowledge Transformation, Design and Technology, Journal of Computer Assisted Learning (to appear)Google Scholar
  13. 13.
    Loll, F., Pinkwart, N., Scheuer, O., McLaren, B.M.: Towards a flexible intelligent tutoring system for argumentation. In: Adeo, I., Chen, N., Kinshuk, Sampson, D., Zaitseva, L. (eds.) Proceedings of the 9th IEEE International Conference on Advanced Learning Technologies (ICALT 2009), Los Alamitos, CA, pp. 647–648 (2009)Google Scholar
  14. 14.
    Scheuer, O., McLaren, B.M., Loll, F., Pinkwart, N.: An analysis and feedback infrastructure for argumentation learning systems. In: Dimitrova, V., Mizoguchi, R., du Boulay, B., Graesser, A. (eds.) Proceedings of the 14th International Conference on Artificial Intelligence in Education (AIED-2009), pp. 629–631. IOS Press (2009)Google Scholar
  15. 15.
    Gutierrez-Santos, S., Mavrikis, M., Magoulas, G.: Layered Development and Evaluation for Intelligent Support in Exploratory Environments: The Case of Microworlds. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 105–114. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Geraniou, G., Mavrikis, M., Hoyles, C., Noss, R.: Students’ justification strategies on equivalence of quasi-algebraic expressions. In: International Conference on Psychology of Mathematics Education, Ancara, Turkey (2011)Google Scholar
  17. 17.
    Dragon, T., Floryan, M., Woolf, B.P., Murray, T.: Recognizing Dialogue Content in Student Collaborative Conversation. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6095, pp. 113–122. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Walker, E., Rummel, N., Koedinger, K.R.: To Tutor the Tutor: Adaptive Domain Support for Peer Tutoring. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 626–635. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    McLaren, B.M., Scheuer, O., Mikšátko, J.: Supporting collaborative learning and e-Discussions using artificial intelligence techniques. International Journal of Artificial Intelligence in Education (IJAIED) 20(1), 1–46 (2010)Google Scholar
  20. 20.
    Pearce-Lazard, D., Poulovassilis, A., Geraniou, E.: The Design of Teacher Assistance Tools in an Exploratory Learning Environment for Mathematics Generalisation. In: Wolpers, M., Kirschner, P.A., Scheffel, M., Lindstaedt, S., Dimitrova, V. (eds.) EC-TEL 2010. LNCS, vol. 6383, pp. 260–275. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Mavrikis, M., Gutierrez-Santos, S., Pearce-Lazard, D., Poulovassilis, A., Magoulas, G.: Layered learner modelling in ill-defined domains: conceptual model and architecture in MiGen. In: Workshop of Intelligent Tutoring Technologies for Ill-Defined Problems and Ill-Defined Domains. Workshop at the 10th International Conference on Intelligent Tutoring Systems, ITS 2010 (2010)Google Scholar
  22. 22.
    Kumar, R., Rosé, C.P.: Architecture for Building Conversational Agents that Support Collaborative Learning. IEEE Transactions on Learning Technologies 4(1), 21–34 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Toby Dragon
    • 1
  • Bruce M. McLaren
    • 1
    • 2
  • Manolis Mavrikis
    • 3
  • Eirini Geraniou
    • 3
  1. 1.CeLTechSaarland UniversityGermany
  2. 2.Carnegie Mellon UniversityUSA
  3. 3.London Knowledge Lab, Institute of EducationUniversity of LondonUK

Personalised recommendations