Advertisement

Isotope Fractionation Related to Organochlorine and Organobromine Compounds

  • Hans EggenkampEmail author
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

The first studies in which chlorine isotope variations concerning organic compounds were experimentally determined were done during the 1950s. Probably the earliest of these studies was done by Bartholomew et al. (Nature 174:133, 1954a, Canadian J Chem 32:979–983, 1954b) who studied the chlorine isotope effect in reactions of 2-chloro-2-methyl-propane (tert-butyl chloride). In these studies essentially the isotope effect of the reaction.

References

  1. Abe Y, Aravena R, Zopfi J, Shouakar-Stash O, Cox E, Roberts JD, Hunkeler D (2009) Carbon and chlorine isotope fractioantion during aerobic oxidation and reductive dechlorination of vinyl chlorde and cis-1,2-dichloroethane. Environ Sci Technol 43:101–107Google Scholar
  2. Aeppli C, Tysklind M, Holmstrand H, Gustafsson Ö (2013a) Use of Cl and C isotopic fractionation to identify degradation and sources of polychlorinated phenols: mechanistic study and field application. Environ Sci Technol 47:6864–6871Google Scholar
  3. Aeppli C, Bastviken D, Andersson P, Gustafsson Ö (2013b) Chlorine isotope effects and composition of naturally produced organochlorines from chloroperoxidases, flavin-dependent halogenases, and in forest soil. Environ Sci Technol 47:790–797Google Scholar
  4. Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34:1794–1805Google Scholar
  5. Audí-Miró C, Cretnik S, Otero N, Palau J, Shouakar-Stash O, Soler A, Elsner M (2013) Cl and C isotope analysis to assess the effectveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values. Appl Geochem 32:173–175Google Scholar
  6. Baertschi P, Kuhn W (1957) Dampfdruckunterschiede isotoper Verbindungen (Infrarot-Anteil der Dispersionswechselwirkung als Ursache für grössere Flüchtigkeit der schweren Molekelspezies). Helv Chim Acta 40:1084–1103Google Scholar
  7. Baertschi P, Kuhn W, Kuhn H (1953) Fractionation of isotopes by distillation of some organic substances. Nature 171:1018–1020Google Scholar
  8. Bartholomew RM, Brown F, Lounsbury M (1954a) Chlorine isotope effect. Nature 174:133Google Scholar
  9. Bartholomew RM, Brown F, Lounsbury M (1954b) Chlorine isotope effect in reactions of tert-butyl chloride. Canadian J Chem 32:979–983Google Scholar
  10. Baumann H, Heumann KG (1988) Chlorisotopenseparation als möglicher Indikator für Emissionsquellen chlorhaltiger Verbindungen. Fresenius Z Anal Chem 330:637–638Google Scholar
  11. Bill M, Rhew RC, Weiss RF, Goldstein AH (2002a) Carbon isotope ratios of methyl bromide and methyl chloride emitted from a coastal salt marsh. Geophys Res Lett 29: doi:  10.1029/2001GL012946
  12. Bill M, Miller LG, Goldstein AH (2002b) Carbon isotope fractionation of methyl bromide during argricultural soil fumigations. Biogeochemistry 60:181–190Google Scholar
  13. Bill M, Conrad ME, Goldstein AH (2004) Stable carbon isotope composition of atmospheric methylbromide. Geophys Res Lett 31:L04109Google Scholar
  14. Burton GW, Sims LB, Wilson JC, Fry A (1977) Calculation of 14C, 37Cl, and deuterium kinetic isotope effects in solvolysis of tert-butyl chloride. J Amer Chem Soc 99:3371–3379Google Scholar
  15. Carrizo D, Unger M, Holmstrand H, Andersson P, Gustafsson Ö, Sylva SP, Reddy CM (2011) Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances. Environ Chem 8:127–132Google Scholar
  16. Cincinelli A, Pieri F, Zhang Y, Seed M, Jone KC (2012) Compound specific isotope analysis (CSIA) for chlorine and bromine: a review of techniques and applications to elucidate environmental sources and processes. Environ Poll 169:112–127Google Scholar
  17. Coleman ML, Ader M, Chaudhuri S, Coates JD (2003) Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol 69:4997–5000Google Scholar
  18. Czarnacki M, Hałas S (2012) Isotope fractionation in aqua-gas systems: Cl2-HCl-Cl-, Br2-HBr-Br- and H2S-S2−. Isot Environ Health Stud 48:55–64Google Scholar
  19. Drenzek NJ, Tarr C, Eglinton TI, Heraty L, Sturchio NC (2002) Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds. Org Chem 33:437–444Google Scholar
  20. Drenzek NJ, Eglinton TI, Wirsen CO, Sturchio NC, Heraty LJ, Sowers KR, Wu QZ, May HD, Reddy CM (2004) Invariant chlorine isotopic signatures during microbial PCB reductive dechlorination. Environ Poll 128:445–448Google Scholar
  21. Elsner M, Chartrand M, Vanstone M, Lacrampe-Couloume G, Lollar BS (2008) Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ Sci Technol 42:5963–5970Google Scholar
  22. Gelman F, Halicz L (2010) High precision determination of bromine isotope ratio by GC-MC-ICPMS. Int J Mass Spectrom 289:167–169Google Scholar
  23. Graczyk DG, Taylor JW (1974) Chlorine kinetic isotope-effects in nucleophilic-substitution reactions—support for ion-pairs mechanism in reactions of p-methoxybenzyl chloride in 70 % aqueous acetone. J Amer Chem Soc 96:3255–3261Google Scholar
  24. Graczyk DG, Taylor JW, Turnquist CR (1978) Use of chlorine kinetic isotope effects for evaluating ion-pairing in nucleophilic displacements at saturated carbon. J Amer Chem Soc 100:7333–7339Google Scholar
  25. Green M, Martin GR (1952) The vapour pressure of isotopic substances. 1. Boron trichloride. Trans Farad Soc 48:416–421Google Scholar
  26. Gribble GW (2010) Naturally occurring organohalogen compounds—a comprehensive update. Progress in the chemistry of organic natural products 91. Springer, BerlinGoogle Scholar
  27. Grimm HG (1929) Tests on the determination of vapour differences of isotopes through fractional distillation. I. Distallation testing on CCl4. Z Phys Chem 2:181–199Google Scholar
  28. Grimsrud EP, Taylor JW (1970) Chlorine kinetic isotope effects in nucleophilic displacements at a saturated carbon. J Amer Chem Soc 92:739–741Google Scholar
  29. Harper DB (1985) Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature 315:55–57Google Scholar
  30. Harper DB (1994) Biosynthesis of halogenated methanes. Biochem Soc Trans 22:1007–1011Google Scholar
  31. Harper DB, Kennedy J, Hamilton JTG (1988) Chlromethane biosynthesis in poroid fungi. Phytochem 27:3147–3153Google Scholar
  32. Heraty LJ, Fuller ME, Huang L, Abrajano T Jr, Sturchio NC (1998) Isotope fractionation of carbon and chlorine by microbial degradation of dichloromethane. Org Geochem 30:793–799Google Scholar
  33. Hill JW, Fry A (1962) Chlorine isotope effects in the reactions of benzyl and substituted benzyl chlorides with various nucleophiles. J Amer Chem Soc 84:2763–2769Google Scholar
  34. Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectr 25:3114–3122Google Scholar
  35. Holmstrand H, Unger M, Carrizo D, Andersson P, Gustafsson Ö (2010) Compound-specific bromine isotope analysis of brominated diphenyl ethers using GC-ICP-multicollector-MS. Rapid Commun Mass Spectr 24:2135–2142Google Scholar
  36. Holt BD, Sturchio NC, Abrajano TA, Heraty LJ (1997) Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine. Anal Chem 69:2727–2733Google Scholar
  37. Holt BD, Heraty LJ, Sturchio NC (2001) Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine. Environ Poll 113:263–269Google Scholar
  38. Horst A (2013) Stable bromine isotopic composition of methyl bromide. Method development and applications. Ph.D. thesis Stockholm UniversityGoogle Scholar
  39. Horst A, Thornton BJ, Holmstrand H, Andersson P, Crill PM, Gustafsson Ö (2013) Stable bromine isotopic composition of atmospheric CH3Br. Tellus Ser B—Chem Phys Meteor 65, no 21040Google Scholar
  40. Horst A, Andersson P, Thornton BJ, Holmstrand H, Wishkerman A, Keppler F, Gustafsson Ö (2014) Stable bromine isotopic composition of methyl bromide released from plant matter. Geochim Cosmochim Acta 125:186–195Google Scholar
  41. Huang L, Sturchio NC, Abrajano T, Heraty LJ, Holt BD (1999) Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Org Geochem 30:777–785Google Scholar
  42. Hunkeler D, Van Breukelen BM, Elsner M (2009) Modelling chlorine isotope trends during sequential transformation of chlorinated ethenes. Environ Sci Technol 43:6750–6756Google Scholar
  43. Jeannottat S, Hunkeler D (2012) Chlorine and carbon isotopes fractionation during volatilization and diffusive transport of trichloroethane in the unsaturated zone. Env Sci Technol 46:3169–3176Google Scholar
  44. Jendrzejewski N, Eggenkamp HGM, Coleman ML (1997) Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent. Anal Chem 69:4259–4266Google Scholar
  45. Julian RL, Taylor JW (1976) Evaluation of possible SN2 transition-state models for reaction of n-butyl chloride using chlorine kinetic isotope effects. J Amer Chem Soc 98:5238–5248Google Scholar
  46. Lewandowicz A, Rudzinski J, Tronstad L, Widersten M, Ryberg P, Matsson O, Paneth P (2001) Chlorine kinetic isotope effects on the haloalkane dehalogenase reaction. J Am Chem Soc 123:4550–4555Google Scholar
  47. Liu CC, Tseng DH, Wang CY (2006) Effects of ferrous iron on the reductive dechlorination of trichloroethylene by zero-valent iron. J Hazard Mater B136:706–713Google Scholar
  48. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186Google Scholar
  49. Nair PM (1956) PhD dissertation, University of ArkansasGoogle Scholar
  50. Öberg G (2002) The natural chlorine cycle—fitting the scattered pieces. Appl Microbiol Biotech 58:565–581Google Scholar
  51. Paneth P (1992) In isotopes in organic chemistry. In: Buncel E, Saunders WH (eds). ElsevierGoogle Scholar
  52. Rank DH, Kargarise RE (1951) Vapour pressure of isotopic carbon tetrachlorides. Nature 168:740–741Google Scholar
  53. Reddy CM, Heraty LJ, Holt BD, Sturchio NC, Eglinton T, Drenzek NJ, Xu L, Lake JL, Maruya KA (2000) Stable chlorine isotopic compositions of arochlors and arochlor-contaminated sediments. Environ Sci Technol 34:2866–2870Google Scholar
  54. Reddy CM, Drenzek NJ, Eglinton TI, Heraty LJ, Sturchio NC, Shiner VJ (2001) Environ Sci Pollut Res 9:183Google Scholar
  55. Reddy CM, Xu L, Drenzek NJ, Sturchio NC, Heraty LJ, Kimblin C, Butler A (2002) A chlorine isotope effect for enzyme-catalyzed chlorination. J Amer Chem Soc 124:14526–14527Google Scholar
  56. Schauble EA, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67:3267–3281Google Scholar
  57. Schauffler SM, Heidt LE, Pollock WH, Gilpin TM, Vedder JF, Solomon S, Lueb RA, Atlas EL (1993) Measurements of halogenated organic compounds near the tropical tropopause. Geophys Res Lett 20:2567–2570Google Scholar
  58. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300Google Scholar
  59. Sims LB, Lewis ED (1985) In Isotopes in organic chemistry. In: Buncel E, Saunders WH (eds). ElsevierGoogle Scholar
  60. Streitwieser A, Jagow RH, Fahey RC, Suzuki S (1958) Kinetic isotope effects in the acetolyses of deuterated cyclopentyl tosylates. J Amer Chem Soc 80:2326–2332Google Scholar
  61. Sturchio NC, Clausen JL, Heraty LJ, Huang L, Holt BD, Abrajano TA (1998) Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer. Env Sci Technol 32:3037–3042Google Scholar
  62. Sturchio NC, Hatzinger PB, Arkins MD, Suh C, Heraty LJ (2003) Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol 37:3859–3863Google Scholar
  63. Świderek K, Paneth P (2012) Extending limits of chlorine kinetic isotope effects. J Org Chem 77:5120–5124Google Scholar
  64. Sylva SP, Ball L, Nelson RK, Reddy CM (2007) Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 21:3301–3305Google Scholar
  65. Taylor JW, Grimsrud EP (1969) Chlorine isotopic ratios by negative ion mass spectrometry. Anal Chem 41:805–810Google Scholar
  66. Turnquist CR, Taylor JW, Grimsrud EP, Williams RC (1973) Temperature dependence of chlorine kinetic isotope effects for aliphatic chlorides. J Amer Chem Soc 95:4133–4138Google Scholar
  67. UNEP [United Nations Environment Programme] (1992) Methyl bromide: its atmospheric science, technology, and economics (montreal protocol assessment supplement)Google Scholar
  68. Van Warmerdam EM, Frape SK, Aravena R, Drimmie RJ, Flatt H, Cherry JA (1995) Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents. Appl Geochem 10:547–552Google Scholar
  69. Westaway KC, Koerner T, Fang YR, Rudziñski J, Paneth P (1998) A new method of determining chlorine kinetic isotope effects. Anal Chem 70:3548–3552Google Scholar
  70. Wieland K (1943) Spektroskopische Bestimmung der Anreicherung eines Chlorisotopen mit minimalen Mengen von Quecksilber(II)-chlorid (Sublimat). Helv Chim Acta 26:1939–1944Google Scholar
  71. Willey JF, Taylor JW (1978) Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and bromide. Anal Chem 50:1930–1933Google Scholar
  72. Willey JF, Taylor JW (1980) Temperature-dependence of bromine kinetic isotope effects for reactions of normal-butyl and tert-butyl bromides. J Amer Chem Soc 102:2387–2391Google Scholar
  73. Williams RC, Taylor JW (1973) Chlorine kinetic isotope-effect models. 1. Isotopic dependence in nominal C-Cl stretching vibrations of aliphatic chlorides and vibrational analysis of tert-butyl chloride ground-state. J Amer Chem Soc 95:1710–1714Google Scholar
  74. Williams RC, Taylor JW (1974) Chlorine kinetic isotope-effect models. 2. Vibrational analysis and kie calculations of tert-butyl chloride transition-state models. J Amer Chem Soc 96:3721–3726Google Scholar
  75. WMO [World Meteorological Organization] (1994) Scientific assessment of ozone depletion: global ozone research and monitoring project report no 37, Geneva, 1995Google Scholar
  76. Zakon Y, Halicz L, Gelman F (2013) Bromine and carbon isotope effects during photolysis of brominated phenols. Environ Sci Technol 47:14147–14153Google Scholar
  77. Zyakun AM, Firsova YuE, Torgonskaya ML, Doronina NV, Trotsenko YuA (2007) Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane. Appl Biochem Microbiol 43:593–597Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onderzoek & BelevingBussumThe Netherlands

Personalised recommendations