Advertisement

Theoretical and Experimental Fractionation Studies of Chloride and Bromide Isotopes

  • Hans EggenkampEmail author
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Diffusion probably is the most well known and most well understood process that is responsible for variations in chlorine and bromine isotope compositions. Molecular diffusion is the process in which matter is transported from one part of a system to another as a result of arbitrary molecular movements (Crank in The mathematics of diffusion. Oxford University Press, London, p 347, 1956). It was first described by Fick (Ann Phys 170:59–86, 1855). This work is now referred to as Fick’s First and Second Laws, and was published even before quantitative experimental measurements had ever been done. Lindemann (Proc Royal Soc London. Series A 99:102–104, 1921) already realised that, due to the mass difference of isotopes from a single element isotopes could theoretically be separated electrolytically. The first study where fractionation due to diffusion of chlorine isotopes was studied was already done in the 1940s (Madorsky and Straus in J Res Nat Bur Stand 38:185–189, 1947) and several more studies have been applied since then going from theoretical, experimental and field studies.

References

  1. Alder BJ, Alley WE, Dymond JH (1974) Studies in molecular dynamics. XIV. Mass and size` dependence of the binary diffusion coefficient. J Chem Phys 61:1415–1420Google Scholar
  2. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, LeidenGoogle Scholar
  3. Atteberry RW, Boyd GE (1950) Separation of seventh group anions by ion-exchange chromatography. J Amer Chem Soc 72:4805–4806Google Scholar
  4. Barnes JD, Sharp ZD, Fischer TP (2008) Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology 36:883–886Google Scholar
  5. Barnes JD, Sharp ZD, Fisher TP, Hilton DR, Carr MJ (2009) Chlorine isotope variations along the Central American volcanic front and back arc. Geochem Geophys Geosys 10:Q11S17Google Scholar
  6. Beekman HE, Eggenkamp HGM, Appelo CAJ (2011) An integrated modelling approach to reconstruct complex solute transport mechanisms—Cl and δ37Cl in pore water of sediments from a former brackish lagoon in The Netherlands. Appl Geochem 26:257–268Google Scholar
  7. Bird RB, Steward WE, Lightfoot EN (2002) Transport Phenomena, 2nd ed. Wiley, New YorkGoogle Scholar
  8. Bourg IC, Sposito G (2007) Molecular dynamics simulations of kinetic isotope fractionation during the diffusion of ionic species in liquid water. Geochim Cosmochim Acta 71:5583–5589Google Scholar
  9. Bourg IC, Sposito G (2008) Isotopic fractionation of noble gases by diffusion in liquid water: molecular dynamics simulations and hydrologic applications. Geochim Cosmochim Acta 72:2237–2247Google Scholar
  10. Bourg IC, Richter FM, Christensen JM, Sposito G (2010) Isotopic mass dependence of metal cation diffusion coefficients in liquid water. Geochim Cosmochim Acta 74:2249–2256Google Scholar
  11. Brewer AK, Madorsky SL, Taylor JK, Dibeler VH, Bradt P, Parham OL, Britten RJ, Reid JG (1947) Concentration of isotopes of potassium by the counter-current electromigration method. J Res Natl Bur Stand 38:137–168Google Scholar
  12. Cameron AE, Herr W, Herzog W, Lundén A (1956) Isotopen-Anreicherung beim Brom durch electrolytische Überführung in geschmolzenem Bleibromid. Z Naturforschng 11a:203–205Google Scholar
  13. Campbell DJ (1985) Fractionation of stable chlorine isotopes during transport through semipermeable membranes. MS thesis, University of ArizonaGoogle Scholar
  14. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, LondonGoogle Scholar
  15. Crank J (1956) The mathematics of diffusion. Oxford University Press, London, p 347Google Scholar
  16. Czarnacki M, Hałas S (2012) Isotope fractionation in aqua-gas systems: Cl2-HCl-Cl-, Br2-HBr-Br- and H2S-S2-. Isot Environ Health Stud 48:55–64Google Scholar
  17. Desaulniers DE, Cherry JA, Fritz P (1981) Origin, age and movement of pore water in argillaceous Quaternary deposits at four sites in southwestern Ontario. J Hydrol 50:217–231Google Scholar
  18. Desaulniers DE, Kaufmann RS, Cherry JA, Bentley HW (1986) 37Cl-35Cl variations in a diffusion controlled groundwater system. Geochim Cosmochim Acta 50:1757–1764Google Scholar
  19. Duursma EK, Hoede C (1967) Theoretical, experimental and field studies concerning molecular diffusion of radioisotopes in sediments and suspended solid particles of the sea. Part A: theories and mathematical calculations. Neth J Sea Res 3:423–457Google Scholar
  20. Eastoe CJ, Long A, Knauth LP (1999) Stable chlorine isotopes in the Palo Duro Basin, Texas: evidence for preservation of Permian evaporite brines. Geochim Cosmochim Acta 63:1375–1382Google Scholar
  21. Eggenkamp HGM (1994) δ37Cl; the geochemistry of chlorine isotopes. Geol Ultrai 116:1–150. Thesis Utrecht UniversityGoogle Scholar
  22. Eggenkamp HGM, Coleman ML (1997) Comparison of chlorine and bromine isotope fractionation in diffusion: geochemical consequences. In: In proceeding of the 7th Annual Goldschmidt conference, Tucson, p 213Google Scholar
  23. Eggenkamp HGM, Coleman ML (2009) The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim Cosmochim Acta 73:3539–3548Google Scholar
  24. Eggenkamp HGM, Middelburg JJ, Kreulen R (1994) Preferential diffusion of 35Cl relative to 37Cl in sediments of Kau Bay, Halmahera, Indonesia. Chem Geol (Isot Geosc Sect) 116:317–325Google Scholar
  25. Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175Google Scholar
  26. Eggenkamp HGM, Bonifacie M, Ader M, Agrinier P (2011) Fractionation of Cl and Br isotopes during precipitation of salts from their saturated solutions. 21th Annual V.M. Goldschmidt Conference. Prague, Czech Republic. Mineral Mag 75:798Google Scholar
  27. Eriksson E (1959) The yearly circulation of chlorines and sulfur in nature: Meteorological, geochemical and pedological implications. Tellus l:375–403Google Scholar
  28. Fick A (1855) Über Diffusion. Ann Phys 170:59–86Google Scholar
  29. Fink CG, Urey HC, Lake DB (1934) The diffusion of hydrogen through metals: fractionation of hydrogen isotopes. J Chem Phys 2:105–106Google Scholar
  30. Groen J, Velstra J, Meesters AGCA (2000) Salinization processes in paleowaters in coastal sediments from Suriname: evidence from δ37Cl analysis and diffusion modelling. J Hydrol 234:1–20Google Scholar
  31. Herzog W, Klemm A (1958) Die Temperaturabhängigkeit des Isotopie-Effekts bei der elektrolytischen Wanderungen der Chlorionen in herschmolzenem Thallium(I)-chlorid. Z Naturforschg 13a:7–16Google Scholar
  32. Heumann KG, Hoffmann R (1976) Chlorine isotope effects in ion exchange chromatography. Angew Chem Int Ed Eng 15:55Google Scholar
  33. Hoering TC, Parker PL (1961) The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Acta 23:186–199Google Scholar
  34. Howald RA (1960) Ion pairs. I. Isotope effects shown by chloride solutions in glacial acetic acid. J Amer Chem Soc 82:20–24Google Scholar
  35. Impey RW, Madden PA, McDonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87:5071–5083Google Scholar
  36. Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92:10767–10776Google Scholar
  37. Kaufmann RS (1984) Chlorine in groundwater: stable isotope distribution. PhD thesis, University of Arizona, TucsonGoogle Scholar
  38. Klemm A (1943) Isotopenanreicherung bei Diffusion von Kupfer in Silbersulfid. Z physikal Chemie 193:29–39Google Scholar
  39. Klemm A, Lundén A (1955) Isotopenanreicherung beim Chlor durch electrolytische Überfürung in geschmolzenem Bleichlorid. Z. Naturforschg. 10A:282–284Google Scholar
  40. Konstantinov BP, Bakulin EA (1965) Separation of chloride isotopes in aqueous solutions of lithium chloride, sodium chloride and hydrochloric acid. Rus J Phys Chem 39:315–318Google Scholar
  41. Langvad T (1954) Separation of chlorine isotopes by ion-exchange chromatography. Acta Chem Scand 8:526–527Google Scholar
  42. Lindemann FA (1921) Discussion on isotopes. Proc Royal Soc London. Series A 99:102–104Google Scholar
  43. Lundén A, Herzog W (1956) Isotopenanreicherung bei Chlor durch electrolytische Überführung in geschmolzenem Zinkchlorid. Z Naturforschg 11a:520Google Scholar
  44. Lundén A, Lodding A (1960) Isotopenanreicherung bei Brom durch electrolytische Überführung in geschmolzenem Zinkbromid. Z. Naturforschg. 15A:320–322Google Scholar
  45. Luo CG, Xiao YK, Wen HJ, Ma HH, Ma YQ, Zhang YL, Zhang YX, He MY (2014) Stable isotope fractionation of chloride during the precipitation of single chloride minerals. Appl Geochem 47:141–149Google Scholar
  46. Luo CG, Xiao YK, Ma HZ, Ma YQ, Zhang YL, He MY (2012) Stable isotope fractionation of chlorine during evaporation of brine from a saline lake. Chin Sci Bull 57:1833–1843Google Scholar
  47. Madorsky SL, Strauss S (1947) Concentration of isotopes of chlorine by the counter-current electromigration method. J Res Nat Bur Stand 38:185–189Google Scholar
  48. Marchese FT, Beveridge DL (1984) Pattern recognition approach to the analysis of geometrical features of solvation: application to the aqueous hydration of Li+, Na+, K+, F-, and Cl-. J Amer Chem Soc 106:3713–3720Google Scholar
  49. Maryott AA, Smith ER (1951) Table of dielectric constants of pure liquids. Nation Bur Stand Circ 514:44Google Scholar
  50. Middelburg JJ, De Lange GJ (1989) The isolation of Kau Bay during the last glaciation: direct evidence from interstitial water chlorinity. Neth J Sea Res 24:615–622Google Scholar
  51. Musashi M, Oi T, Eggenkamp HGM (2004) Experimental determination of chlorine isotope separation factor by anion-exchange chromatography. Anal Chim Acta 508:37–40Google Scholar
  52. Musashi M, Oi T, Eggenkamp HGM, Yato Y, Matsuo M (2007) Anion-exchange chromatographic study of the chlorine isotope effect accompanying hydration. J Chrom A 1140:121–125Google Scholar
  53. Nuevo MJ, Morales JJ, Heyes DM (1995) Mass dependence of isotope selfdiffusion by molecular dynamics. Phys Rev E 51:2026–2032Google Scholar
  54. Phillips FM, Bentley HW (1987) Isotopic fractionation during ion filtration: I. Theory. Geochim Cosmochim Acta 51:683–695Google Scholar
  55. Powell DH, Barnes AC, Enderby JE, Neilson GW, Salmon PS (1988) The hydration structure around chloride ions in aqueous solution. Faraday Discuss Chem Soc 85:137–146Google Scholar
  56. Richter FM, Mendybaev RA, Christensen JN, Hutcheon ID, Williams RW, Sturchio NC, Beloso AD Jr (2006) Kinetic isotopic fractionation during diffusion of ionic species in water. Geochim Cosmochim Acta 70:277–289Google Scholar
  57. Riemann W, Lindenbaum S (1952) Analysis of mixtures of chloride and bromide by ion-exchange chromatography. Anal Chem 24:1199–1200Google Scholar
  58. Samoilov OY (1957) A new approach to the study of hydration of ions in aqueous solutions. Disc Faraday Soc 24:141–146Google Scholar
  59. Schauble EA, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67:3267–3281Google Scholar
  60. Schreiner F, Fried S, Friedman AM (1982) Measurement of radionuclide diffusion in oceanfloor sediment and clay. Nucl Technol 59:429–438Google Scholar
  61. Sharp ZD, Barnes JD, Brearly AJ, Chaussidon M, Fisher TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065Google Scholar
  62. Sharp ZD, Barnes JD, Fischer TP, Halick M (2010) An experimental determination of chlorine isotope fractionation in acid systems and applications to volcanic fumaroles. Geochim Cosmochim Acta 74-264–273Google Scholar
  63. Tabor D (1991) Gases, Liquids and Solids, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  64. Tan HB, Ma HZ, Xiao YK, Wei HZ, Zhang XY, Ma WD (2005) Characteristics of chlorine isotope distribution and analysis on sylvinite deposit formation based on ancient salt rock in western Tarim basin. Sc China (ser. D) 48:1913–1920Google Scholar
  65. Tan HB, Ma HZ, Wei HZ, Xu JX, Li TW (2006) Chlorine, sulfur and oxygen isotopic constraints on ancient evaporite deposit in the Western Tarim Basin, China. Geochem J 40:569–577Google Scholar
  66. Tan HB, Ma HZ, Zhang XY, Xu JX, Xiao YK (2009) Fractionation of chlorine isotope in salt mineral sequences and application: research on sedimentary stage of ancient salt rock deposit in Tarim Basin and western Qaidam Basin. Acta Petrol Sinica 25:955–962 (in Chinese with English abstract)Google Scholar
  67. Volpe C, Spivack AJ (1994) Stable chlorine isotopic composition of marine aerosol-particles in the Western Atlantic Ocean. Geophys Res Letters 21:1161–1164Google Scholar
  68. Volpe C, Wahlen M, Pszenny AAP, Spivack AJ (1998) Chlorine isotopic composition of marine aerosols: implications for the release of reactive chlorine and HCl cycling rates. Geophys Res Letters 25:3831–3834Google Scholar
  69. Willeke M (2003) Limits of the validity of the mass ratio independence of the Stokes-Einstein relation: molecular dynamics calculations and comparisons with the Enskog theory. Mol Phys 11:1123–1130Google Scholar
  70. Xiao YK, Liu WG, Zhou YM, Wang YH, Shirodkar PV (2000) Variations in isotopic compositions of chlorine in evaporation controlled salt lake brines of Qaidam Basin, China. Chin J Ocean Limn 18:169–177Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onderzoek & BelevingBussumThe Netherlands

Personalised recommendations