Advertisement

Preparation Techniques for the Analysis of Stable Bromine Isotopes

  • Hans EggenkampEmail author
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Shortly after the development of the mass spectrograph it was discovered that bromine consists of two stable isotopes (Aston in Nature 105:547, 1920a, Phil Mag 40:628–634, 1920c). Later it was confirmed that the two isotopes have abundances which are bout equal (Aston in Proc R Soc Lond A 132:487–498, 1931).

References

  1. Aeppli C, Holmstrand H, Andersson P, Gustafsson Ö (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82:420–426CrossRefGoogle Scholar
  2. Aston FW (1920a) The constitution of the elements. Nature 105:547CrossRefGoogle Scholar
  3. Aston FW (1920b) The mass spectra of the chemical elements. Phil Mag 39:611–625Google Scholar
  4. Aston FW (1920c) The mass spectra of the chemical elements - part 2. Phil Mag 40:628–634CrossRefGoogle Scholar
  5. Aston FW (1931) The isotopic constitution and atomic weights of selenium, bromine, boron, tungsten, antimony, osmium, ruthenium, tellurium, germanium, rhenium and chlorine. Proc R Soc Lond A 132:487–498CrossRefGoogle Scholar
  6. Blewett JP (1936) Mass spectrograph analysis of bromine. Phys Rev 49:900–903CrossRefGoogle Scholar
  7. Boeke HE (1908) Über das Krystallisationsschema der Chloride, Bromide, Jodide von Natrium, Kalium und Magnesium, sowie über das Vorkommen des Broms und das Fehlen von Jod in den Kalisalzlagerstätten. Z. Kristallogr 45:346–391Google Scholar
  8. Bremner JM (1965) In: Methods of Soil Analysis, Part 2. Agronomy 9. American Society of Agronomy, Madison, pp 1179–1237Google Scholar
  9. Cameron AE, Lippert EL (1955) Isotope composition of bromine in nature. Science 121:136–137CrossRefGoogle Scholar
  10. Cameron AE, Herr W, Herzog W, Lundén A (1956) Isotopen-Anreicherung beim Brom durch electrolytische Überführung in geschmolzenem Bleibromid. Z Naturforschng 11a:203–205CrossRefGoogle Scholar
  11. Catanzaro EJ, Murphy TJ, Garner EL, Shields WR (1964) Absolute isotopic abundance ratio and the atomic weight of bromine. J Res Nat Bur Stand (US) 68A:593–599CrossRefGoogle Scholar
  12. De Groot PA (2004) Handbook of stable isotope analytical techniques, vol I. Elsevier, LondonGoogle Scholar
  13. Dechan M (1886) Detection and estimation of iodine, bromine, and chlorine. J Chem Soc 49:682–685CrossRefGoogle Scholar
  14. Du Y, Ma T, Yang J, Liu L, Shan HM, Cai HS, Liu CF, CHen LZ (2013) A precise analytical method for bromine stable isotopes in natural waters by GasBench II-IRMS. Int J Mass Spectrometry 338:50–56CrossRefGoogle Scholar
  15. Eggenkamp HGM (1994) δ37Cl; the geochemistry of chlorine isotopes. Geol Ultrai 116:1–150 (Thesis Utrecht University)Google Scholar
  16. Eggenkamp HGM, Coleman ML (2000) Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem Geol 167:393–402CrossRefGoogle Scholar
  17. Ehrlich S, Karpas Z, Ben-Dor L, Halicz L (2001a) High precision lead isotope ratio measurements by multicollector-ICP-MS in variable matrices. J Anal Atom Spectrom 16:975–977CrossRefGoogle Scholar
  18. Ehrlich S, Gavrieli I, Ben-Dor L, Halicz L (2001b) Direct high-precision measurements of the 87Sr/86Sr isotope ratio in natural water, carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). J Anal Atom Spectrom 16:1389–1392CrossRefGoogle Scholar
  19. Friedheim C, Meyer RJ (1892) Über die quantitative Trennung und Bestimmung von Chlor. Brom und Jod Z Anorg Chemie 1:407–422CrossRefGoogle Scholar
  20. Gelman F, Halicz L (2010) High precision determination of bromine isotope ratio by GC-MC-ICPMS. Int J Mass Spectrom 289:167–169CrossRefGoogle Scholar
  21. Gelman F, Halicz L (2011) High-precision isotope ratio analysis of inorganic bromide by continuous flow MC-ICPMS. Int J Mass Spectrom 307:211–213CrossRefGoogle Scholar
  22. Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom 25:3114–3122CrossRefGoogle Scholar
  23. Holmstrand H, Unger M, Carrizo D, Andersson P, Gustafsson Ö (2010) Compound-specific bromine isotope analysis of brominated diphenyl ethers using GC-ICP-multicollector-MS. Rapid Commun Mass Spectrom 24:2135–2142CrossRefGoogle Scholar
  24. Horst A (2013) Stable bromine isotopic composition of methyl bromide. Method development and applications. PhD thesis, Stockholm UniversityGoogle Scholar
  25. Horst A, Holmstrand H, Andersson P, Andersson A, Carrizo D, Thornton BJ, Gustafsson Ö (2011) Compound-specific bromine isotope analysis of methyl bromide using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry. Rapid Comm Mass Spectrom 25:2425–2432CrossRefGoogle Scholar
  26. Liu YD, Zhou AG, Gan YQ, Liu CF, Yu TT, Li XQ (2013) An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a Gasbench II. J South Centr Univ 20:193–198CrossRefGoogle Scholar
  27. Löwich C (1829) Das Brom und seine chemischen Verhaltnisse. Heidelberg. 175 ppGoogle Scholar
  28. Nier AO (1940) A mass spectrometer for routine isotope abundance measurements. Rev Sci Inst 11:212–216CrossRefGoogle Scholar
  29. Rankama K, Sahama TG (1950) Geochemistry. The University of Chicago Press, ChicagoGoogle Scholar
  30. Shouakar-Stash O, Drimmie RJ, Frape SK (2005a) Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 19:121–127CrossRefGoogle Scholar
  31. Shouakar-Stash O, Frape SK, Drimmie RJ (2005b) Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry. Anal Chem 77:4027–4033CrossRefGoogle Scholar
  32. Sylva SP, Ball L, Nelson RK, Reddy CM (2007) Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 21:3301–3305CrossRefGoogle Scholar
  33. Taylor JW, Grimsrud EP (1969) Chlorine isotopic ratios by negative ion mass spectrometry. Anal Chem 41:805–810CrossRefGoogle Scholar
  34. Thornton B, Horst A, Carrizo D, Holmstrand H, Andersson P, Crill PM, Gustafsson Ö (2013) A high-volume cryosampler and sample purification system for bromine isotope studies of methyl bromide. J Atmos Ocean Techn 30:2095–2107CrossRefGoogle Scholar
  35. Williams D, Yuster Ph (1946) Isotopic constitution of tellurium, silicon, tungsten, molybdenum, and bromine. Phys Rev 69:556–567CrossRefGoogle Scholar
  36. Willey JF, Taylor JW (1978) Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and bromide. Anal Chem 50:1930–1933Google Scholar
  37. Xiao YK, Liu WG, Qi HP, Zhang CG (1993) A new method for the high precision isotopic measurement of bromine by thermal ionization mass spectrometry. Intl J Mass Spectrom Ion Proc 123:117–123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onderzoek & BelevingBussumThe Netherlands

Personalised recommendations