Isotope Variations of Organochlorine and Organobromine Compounds in Natural Environments

  • Hans EggenkampEmail author
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


The first analytical techniques that were developed to analyse the isotope compositions of organochlorine compounds were dual-inlet techniques that required large amounts of sample for analysis. As the concentrations of these compounds, even at contaminated sites, are relatively low, using these techniques would require the processing of large amounts of contaminated water or soil to obtain a sufficient amount of these chlorinated compounds.


  1. Aeppli C, Holmstrand H, Andersson P, Gustafsson Ö (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82:420–426CrossRefGoogle Scholar
  2. Carrizo D, Unger M, Holmstrand H, Andersson P, Gustafsson Ö, Sylva SP, Reddy CM (2011) Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances. Environ Chem 8:127–132CrossRefGoogle Scholar
  3. Gelman F, Halicz L (2010) High precision determination of bromine isotope ratio by GC-MC-ICPMS. Int J Mass Spectrom 289:167–169CrossRefGoogle Scholar
  4. Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom 25:3114–3122CrossRefGoogle Scholar
  5. Holmstrand H, Mandalakis M, Zencak Z, Gustafsson Ö, Andersson P (2006) Chlorine isotope fractionation of a semi-volatile organochlorine compound during preparative megabore-column capillary gas chromatography. J Chromatogr A 1103:133–138CrossRefGoogle Scholar
  6. Holmstrand H, Mandalakis M, Zencak Z, Andersson P, Gustafsson O (2007) First compound-specific chlorine-isotope analysis of environmentally-bioaccumulated organochlorines indicates a degradation-relatable kinetic isotope effect for DDT. Chemosphere 69:1533–1539CrossRefGoogle Scholar
  7. Holmstrand H, Unger M, Carrizo D, Andersson P, Gustafsson Ö (2010a) Compound-specific bromine isotope analysis of brominated diphenyl ethers using GC-ICP-multicollector-MS. Rapid Commun Mass Spectrom 24:2135–2142CrossRefGoogle Scholar
  8. Holmstrand H, Zencak Z, Mandalakis M, Andersson P, Gustafsson Ö (2010b) Chlorine isotope evidence for the anthropogenic origin of tris-(4-chlorophenyl)methane. Appl Geochem 25:1301–1306CrossRefGoogle Scholar
  9. Holt BD, Sturchio NC, Abrajano TA, Heraty LJ (1997) Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine. Anal Chem 69:2727–2733CrossRefGoogle Scholar
  10. Holt BD, Heraty LJ, Sturchio NC (2001) Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine. Environ Pollut 113:263–269CrossRefGoogle Scholar
  11. Hunkeler D, Aravena R (2000) Determination of stable carbon isotope ratios of chlorinated methanes, ethanes and ethenes in aqueous samples. Environ Sci Technol 34:2839–2844CrossRefGoogle Scholar
  12. Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL (2004) Effect of source variability and transport processes on carbon isotope ratios of TCE en PCE in two sandy aquifers. J Contam Hydrol 74:265–282CrossRefGoogle Scholar
  13. Hunkeler D, Aravena R, Shouakar-Stash O, Weisbrod N, Nasser A, Netzer L, Ronen D (2011) Carbon and chlorine isotope ratios of chlorinated ethenes migrating through a thick unsaturated zone of a sandy aquifer. Environ Sci Technol 45:8247–8253CrossRefGoogle Scholar
  14. Jendrzejewski N, Eggenkamp HGM, Coleman ML (1997) Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent. Anal Chem 69:4259–4266CrossRefGoogle Scholar
  15. Jendrzejewski N, Eggenkamp HGM, Coleman ML (2001) Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope and application to environmental problems. Appl Geochem 16:1021–1031CrossRefGoogle Scholar
  16. Jensen S, Athanasiadou M, Bergman Å (1992) A technique for separation of xenobiotics from large amounts of lipids. Organohalogen Compd 8:79–80Google Scholar
  17. Kaown D, Shouakar-Stash O, Yang J, Hyun YJ, Lee KK (2013) Identification of multiple sources of groundwater contamination by dual isotopes. Ground Water. doi: 10.1111/gwat.12130 CrossRefGoogle Scholar
  18. Lojkasek-Lima P, Aravena R, Parker BL, Chrry JA (2012) Fingerprinting TCE in a bedrock aquifer using Compound-Specific Isotope Analysis. Ground Water 50:754–764CrossRefGoogle Scholar
  19. Reddy CM, Heraty LJ, Holt BD, Sturchio NC, Eglinton T, Drenzek NJ, Xu L, Lake JL, Maruya KA (2000) Stable chlorine isotopic compositions of arochlors and arochlor-contaminated sediments. Environ Sci Technol 34:2866–2870CrossRefGoogle Scholar
  20. Reddy CM, Xu L, Drenzek NJ, Sturchio NC, Heraty LJ, Kimblin C, Butler A (2002) A chlorine isotope effect for enzyme-catalyzed chlorination. J Am Chem Soc 124:14526–14527CrossRefGoogle Scholar
  21. Ronen D, Magaritz M, Levy I (1986) A multilayer sampler for the study of detailed hydrochemical profiles in groundwater. Water Res 20:311–315CrossRefGoogle Scholar
  22. Ronen D, Lev-Wiener H, Graber E, Dahan O, Weisbrod N (2010) Simultaneous counter-flow of chlorinated volatile organic compounds across the saturated-unsaturated interface region of an aquifer. Water Res 29:261–280Google Scholar
  23. Sakaguchi-Söder K, Jager J, Grund H, Matthäus F, Schüth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom 21:3077–3084CrossRefGoogle Scholar
  24. Shouakar-Stash O, Drimmie RJ, Zhang M, Frape SK (2006) Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl Geochem 21:766–781CrossRefGoogle Scholar
  25. Stiber NA, Small MJ, Fischbeck PS (1998) The relation-ship between historic industrial site use and environmental contamination. J Air Waste Manage Assoc 48:809–818CrossRefGoogle Scholar
  26. Sturchio NC, Clausen JL, Heraty LJ, Huang L, Holt BD, Abrajano TA (1998) Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer. Env Sci Technol 32:3037–3042CrossRefGoogle Scholar
  27. Sylva SP, Ball L, Nelson RK, Reddy CM (2007) Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 21:3301–3305CrossRefGoogle Scholar
  28. Teuten EL, King GM, Reddy CM (2006) Natural 14C in Saccoglossus bromophenolosus compared to 14C in surrounding sediments. Mar Ecol Prog Ser 324:167CrossRefGoogle Scholar
  29. Wiegert C, Aeppli C, Knowles T, Holmstrand H, Evershed R, Pancost RD, Macháčková J, Gustafsson O (2013) Dual Carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Environ Sci Technol 46:10918–10925CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onderzoek & BelevingBussumThe Netherlands

Personalised recommendations