Advertisement

The Halogen Elements

  • Hans Eggenkamp
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Group 17 of the periodic table of the elements (see Table 1.1) consists of the so called halogen elements fluorine, chlorine, bromine, iodine, astatine and the recently discovered element 117 (Organessian et al. in Phys Rev Lett 104:142502, 2010), although it is not yet known if this element behaves similar to the other group 17 elements due to possible relativistic effects (see e.g. Pyykkö 2011b). Group 17 elements are characterised by an outer electron shell which contains seven electrons, so that only one electron needs to be added to give it a full noble gas configuration. This property makes that the dominant oxidation state, especially for the lighter elements of this group, is the -I oxidation state and they predominantly form ionogenic compounds. In the earth’s surface reservoir chlorine and bromine are most commonly found in aqueous solution in the oceans, as most of their salts are readily soluble in water, and in evaporite deposits while fluorine is most common in some fluoride rich minerals such as fluorite (CaF2), fluorapatite (Ca5(PO4)3F), and cryolite (Na3AlF6) as the alkaline earth fluorides (e.g. CaF2, MgF2) have a low solubility and precipitate out of waters with significant alkaline earth concentrations. Iodine has a relatively low concentration in seawater as it is efficiently removed from it by certain brown algae which are able to heavily concentrate iodine.

Keywords

Chlorine Concentration Iron Meteorite Hydrogen Fluoride Surface Reservoir Outer Electron Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allegre C, Manhès G, Lewin É (2001) Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet Sci Lett 185:49–69CrossRefGoogle Scholar
  2. Ampère AM (1816) D’une classification naturelle pour les corps simples. Annal Chim Phys 2:6–21Google Scholar
  3. Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380CrossRefGoogle Scholar
  4. Balard AJ (1826) Sur une substance particulière contenue dans l’eau de la mer. Annal Chim Phys 2me series 32:337–381Google Scholar
  5. Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl Chem 83:397–410Google Scholar
  6. Boeke HE (1908) Über das Krystallisationsschema der Chloride, Bromide, Jodide von Natrium, Kalium und Magnesium, sowie über das Vorkommen des Broms und das Fehlen von Jod in den Kalisalzlagerstätten. Z Kristallogr 45:346–391Google Scholar
  7. Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008) The chlorine isotope composition of earth’s mantle. Science 319:1518–1520CrossRefGoogle Scholar
  8. Braitsch O (1962) Entstehung und Stoffbestand der Salzlagerstätten. Springer, BerlinCrossRefGoogle Scholar
  9. Braitsch O, Hermann AG (1963) Zur Geochemie des Broms in salinaren Sedimenten: Teil I: Experimentelle Bestimmung der Br-Verteilung in verschiedenen natürlichen Salzsystemen. Geochim Cosmochim Acta 27:361–391CrossRefGoogle Scholar
  10. Cameron AGW (1970) Abundances of the elements in the solar system. Space Sci Rev 15:121–146Google Scholar
  11. Champion J, Alliot C, Renault E, Mokili BM, Chérel M, Galland N, Montavon G (2010) Astatine standard redox potentials and speciation in acidic medium. J Phys Chem A 114:576–582CrossRefGoogle Scholar
  12. Corson DR, MacKenzie KR, Segrè E (1940) Artificially radioactive element 85. Phys Rev 58:672–678CrossRefGoogle Scholar
  13. Courtois B (1813) Découverte d’une substance nouvelle dans le Vareck. Annal Chim 88:304–310Google Scholar
  14. Davy H (1811) On a combination of oxymuriatic gas and oxygene gas. Phil Trans R Soc Lond 101:155–162CrossRefGoogle Scholar
  15. Davy H (1813) Sur la nouvelle substance découverte par M. Courtois, dans le sel de Vareck. Annal Chemie 88:322–329Google Scholar
  16. Davy H (1814a) Some experiments and observations on a new substance which becomes a violet coloured gas by heat. Phil Trans R Soc Lond 104:74–93CrossRefGoogle Scholar
  17. Davy H (1814b) Mémoire sur la nature de l’acide fluorique, lu á la Societé Royale de Londres, le 8 julliet 1814, et Annal Chim 88:271Google Scholar
  18. Elert G (1998–2012) The physics hypertextbook, atomic models. http://physics.info/atomic-models/. Accessed 12 Aug 2014
  19. Feynman RP (1948) Relativistic cut-off for quantum electrodynamics. Phys Rev 74:1430–1438CrossRefGoogle Scholar
  20. Frémy E (1850) Recherches sur les fluorures. Ann Chim Phys 2me Serie, t. LXVII, p 5Google Scholar
  21. Fricke B, Waber JT (1971) Theoretical predictions of the chemistry of superheavy elements. Actinides Rev 1:433–485Google Scholar
  22. Fricke B, Greiner W, Waber JT (1971) The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements. Theoret Chim Acta 21:235–260 (Berlin)CrossRefGoogle Scholar
  23. Garrison D, Hamlin S, Bogard D (2000) Chlorine abundances in meteorites. Meteor Planet Sci 35:419–429CrossRefGoogle Scholar
  24. Gast PW (1972) The chemical composition of the earth, the moon and chondritic meteorites. In: Nature of the solid earth; edt. EC Robertson. McGraw-Hill, New York pp 19-40Google Scholar
  25. Gay-Lussac J (1813a) Sur un nouvel acide formé avec la substance décourverte par M. Courtois. Annal Chim 88:311–318Google Scholar
  26. Gay-Lussac J (1813b) Sur la combination de l’iode avec d’oxigène. Annal Chimie 88:319–321Google Scholar
  27. Gay-Lussac J (1814) Mémoire sur l’iode. Annal Chim 91:5–160Google Scholar
  28. Gay-Lussac J, Thénard L (1809) De la nature et des propriétés de l’acide muriatique et de l’acide muriatique oxigéné. Mém Phys Chim Société d’Arcueil 2:339–358Google Scholar
  29. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc 1937:655–673CrossRefGoogle Scholar
  30. Graedel TE, Keene WC (1996) The budget and cycle of Earthś natural chlorine. Pure Appl Chem 68:1689–1697Google Scholar
  31. Harben PW, Kužvart M (1996) Industrial minerals—a global geology. Industrial Minerals Information Ltd., Metal Bulletin PLC, London 462 ppGoogle Scholar
  32. Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Söding E (2006) Evaporites and the salinity of the ocean during the phanerozoic: implications for climate, ocean circulation and life. Pal Pal Pal 240:3–46CrossRefGoogle Scholar
  33. Ito E, Harris DM, Anderson AT Jr (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624CrossRefGoogle Scholar
  34. Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosystems 4. doi: 10.1029/2002GC000392
  35. Karlik B, Bernert T (1943a) Eine neue natürliche α-Strahlung. Naturwissenschaften 31:298–299CrossRefGoogle Scholar
  36. Karlik B, Bernert T (1943b) Das Element 85 in den natürlichen Zerfallsreihen. Z Physik A 123:51–72CrossRefGoogle Scholar
  37. Kaufmann RS (1984) Chlorine in groundwater: Stable isotope distribution. Ph.D. thesis, University of Arizona, Tucson, ArizGoogle Scholar
  38. Khazan A (2007) Effect from hyperbolic law in periodic table of elements. Prog Phys 2:83–86Google Scholar
  39. Khuyagbaatar J, Yakushev A, Düllmann ChE, Ackermann D, Andersson LL, Asai M, Block M, Boll RA, Brand H, Cox DM, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates JM, Gharibyan N, Golubev P, Gregorich KE, Hamilton JH, Hartmann W, Herzberg RD, Heßberger FP, Hinde DJ, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz JV, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt JP, Pang GK, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski KP, Sarmiento LG, Schädel M, Schausten B, Semchenkov A, Shaughnessy DA, Steinegger P, Steiner J, Tereshatov EE, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward DE, Wegrzecki M, Wiehl N, Van Cleve SM, Yakusheva V (2014) 48Ca + 249Bk fusion reaction leading to element Z = 117: Long-lived α-decaying 270Db and discovery of 266Lr. Phys Rev Lett 112:172501CrossRefGoogle Scholar
  40. Knauth LP (1998) Salinity history of the Earth’s early ocean. Nature 395:554−555 Google Scholar
  41.  Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Pal Pal Pal 219:53–69CrossRefGoogle Scholar
  42. Land LS (1995) The role of saline formation water in crustal cycling. Aquat Chem 1:137–145Google Scholar
  43. Layne GD, Kent AJR, Bach W (2009) δ37Cl systematics of a backarc spreading system: the Lau Basin. Geology 37:427–430CrossRefGoogle Scholar
  44. Löwich C (1827) Über Brombereitung und eine auffallende Zersetzung des Aethers durch Chlor. Mag Pharmacie 21:31–36Google Scholar
  45. Löwich C (1828) Über einige Bromverbindungen und über Bromdarstellung. Ann Phys Chem 14:485–499CrossRefGoogle Scholar
  46. Lyday PA (2005) Iodine and iodine compounds, in ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim, vol A14, pp 382–390Google Scholar
  47. Marggraf AS (1768) Observation concernant une volatilisation remarquable d’une partie de l’espèce de pierre, à laquelle on donne les noms de Flosse, Flusse, Flus-Spaht, et aussi celui d’hespéros; laquelle volatilisation a été effectuée au moyen des acides. Histoire de l’Académie Royale des Sciences et des Belles-Lettres de Berlin. 1768:1–11Google Scholar
  48. Mason B (1952) Principles of geochemistry. Wiley, New YorkGoogle Scholar
  49. McDonough WF (2000) The composition of the earth. In: Teisseyre R, Majewski E (eds) Earthquake thermodynamics and phase transformations in the earth’s interiorGoogle Scholar
  50. Moissan H (1887) Recherges sur l’isolement du fluor. Annal Chim Phys 6me serie, t. XII, Gauthiers-Villars, Paris, 66 ppGoogle Scholar
  51. Nefedov VI, Trzhaskovskaya MB, Yarzhemskii VG (2006) Electronic configurations and the periodic table for superheavy elements. Dokl Phys Chem 408:149–151CrossRefGoogle Scholar
  52. Organessian YUTS, Abdullin FSH, Bailey PD, Benker DE, Bennett ME, Dmitriev SN, Ezold JG, Hamilton JH, Henderson RA, Itkis MG, Lobanov YUV, Mezentsev AN, Moody KJ, Nelson SL, Polyakov AN, Porter CE, Ramayya AV, Riley FD, Roberto JB, Ryabinin MA, Rykaczewski KP, Sagaidak RN, Shaughnessy DA, Shirokovsky IV, Stoyer MA, Subbotin VG, Sudowe R, Sukhov AM, Tsyganov YuS, Utyonkov VK, Voinov AA, Vostokin GK, Wilk PA (2010) Synthesis of a new element with atomic number Z = 117. Phys Rev Lett 104:142502CrossRefGoogle Scholar
  53. Pytkowicz RM, Kester DR (1971) Physical chemistry of sea water. Oceanogr Mar Biol A Rev 9:11–60Google Scholar
  54. Pyykkö P (2011a) A suggested periodic table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions. Phys Chem Chem Phys 13:161–168CrossRefGoogle Scholar
  55. Pyykkö P (2011b) Relativistic effects in chemistry: more common than you thought. Ann Rev Phys Chem 63:45–64CrossRefGoogle Scholar
  56. Rahn KA (1976) Technical Report. University of Rhode IslandGoogle Scholar
  57. Seaborg GT (1968) Elements beyond 100, present status and future prospects. Ann Rev Nucl Sci 18:53–152CrossRefGoogle Scholar
  58. Scheele CW (1771) Undersökning om fluss-spat och dess syra. Kongl Vetenskaps Academiens Handlingar 32:120–137Google Scholar
  59. Scheele CW (1774) On Brun-sten eller Magnesia, och dess Egenskaper. Kongl Vetenskaps Academiens Handlingar 35:89–116Google Scholar
  60. Schilling JG, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636CrossRefGoogle Scholar
  61. Sharp ZD, Barnes JD, Brearly AJ, Chaussidon M, Fisher TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065CrossRefGoogle Scholar
  62. Sharp ZD, Mercer JA, Jones RH, Brearley AJ, Selverstone J, Bekker A, Stachel T (2013) The chlorine isotope composition of chondrites and Earth. Geochim Cosmochim Acta 107:189–204CrossRefGoogle Scholar
  63. Stacy FD (1969) Physics of the earth, 3rd edn. Wiley Interscience, New YorkGoogle Scholar
  64. Suess H, Urey H (1956) Abundances of the Elements. Rev Mod Phys 28:53–74CrossRefGoogle Scholar
  65. Turekian KK (1971) Geochemical distribution of elements. McGraw-Hill Encyclopedia of Science and Technology 4:627–630Google Scholar
  66. Weeks ME (1942) The discovery of the elements. XVIII. The halogen family. J Chem Ed 9:1915–1939CrossRefGoogle Scholar
  67. Wieser ME, Holden N, Coplen TC, Böhlke JK, Berglund M, Brand WA, De Biévre P, Gröning M, Loss RD, Meija J, Hirata T, Prohaska T, Schoenberg R, O’Connor G, Walczyk T, Yoneda S, Zhu XK (2013) Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl Chem 85:1047–1078Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onderzoek & BelevingBussumThe Netherlands

Personalised recommendations