Advertisement

IRMA Code II

A New Concept for Classification of Medical Images
  • Tim-Christian PieschEmail author
  • Henning Müller
  • Christiane K. Kuhl
  • Thomas M. Deserno
Chapter
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Content-based image retrieval (CBIR) provides novel options to access large repositories of medical images. Thus, there are new opportunities for storing, querying and reporting especially within the field of digital radiology. This, however, requires a revisit of nomenclatures for image classification. The Digital Imaging and Communication in Medicine (DICOM), for instance, defines only about 20, partly overlapping terms for coding the body region. In 2002, the Image Retrieval in Medical Applications (IRMA) project has proposed a mono-hierarchic, multi-axial coding scheme. Although the initial concept of the IRMA Code was designed for later expansion, the appliance of the terminology in the practice of scientific projects discovered several weak points. In this paper, based on a systematic analysis and the comparison with other relevant medical ontologies such as the Lexicon for Uniform Indexing and Retrieval of Radiology Information Resources (RadLex), we accordingly propose axes for medical equipment, findings and body positioning as well as additional flags for age, body part, ethnicity, gender, image quality and scanned film. The IRMA Code II may be used in the Cross Language Evaluation Campaign (CLEF) annotation tasks as a database of classified images to evaluate visual information retrieval systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehmann TM, Schubert H, Keysers D, et al. The IRMA code for unique classification of medical images. Procs SPIE. 2003;5033:440–451.CrossRefGoogle Scholar
  2. 2.
    Deselaers T, Deserno TM, M¨uller H. Automatic medical image annotation in ImageCLEF 2007. Overview, results, and discussion. Pattern Recognit Lett. 2008;29(15):1988–95.CrossRefGoogle Scholar
  3. 3.
    Deselaers T, M¨uller H, Clough P, et al. The CLEF 2005 automatic medical image annotation task. Int J Computer Vis. 2007;74(1):51–8.CrossRefGoogle Scholar
  4. 4.
    Langlotz CP. RadLex: a new method for indexing online educational materials. RadioGraphics. 2006;26(6):1595–7.CrossRefGoogle Scholar
  5. 5.
    Zaiß A, Graubner B, Ingenerf J, et al. Medizinische Dokumentation, Terminologie und Linguistik. In: Lehmann TM, editor. Handbuch der Medizinischen Informatik. 1st ed. Aachen: Hanser; 2002. p. 45–99.Google Scholar
  6. 6.
    Thun S. Medizinische Dokumentation und Kommunikation. In: Johner C, Haas P, editors. Praxishandbuch IT im Gesundheitswesen: Erfolgreich einf¨uhren, entwickeln, anwenden und betreiben. 1st ed. M¨unchen: Hanser; 2009. p. 131–60.Google Scholar
  7. 7.
    Mildenberger P, Eichelberg M, Martin E. Introduction to the DICOM standard. Eur Radiol. 2002 Apr;12(4):920–7.Google Scholar
  8. 8.
    Kahn CE, Jr, Thao C. GoldMiner: a radiology image search engine. Am J Roentgenol. 2007;188(6):1475–8.CrossRefGoogle Scholar
  9. 9.
    Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4-5):198–211.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tim-Christian Piesch
    • 1
    Email author
  • Henning Müller
    • 2
    • 3
  • Christiane K. Kuhl
    • 4
  • Thomas M. Deserno
    • 1
  1. 1.Department of Medical InformaticsRWTH Aachen UniversityAachenDeutschland
  2. 2.Medical InformaticsGeneva University Hospitals & Univ. of GenevaGenevaSchweiz
  3. 3.Business Information Systems, HES-SOSierreSchweiz
  4. 4.Department of Diagnostic and Interventional RadiologyUniversity Hospital AachenAachenSchweiz

Personalised recommendations