Advertisement

Estimating Blood Flow Based on 2D Angiographic Image Sequences

  • Sepideh Alassi
  • Markus Kowarschik
  • Thomas Pohl
  • Harald Köstler
  • Ulrich Rude
Chapter
Part of the Informatik aktuell book series (INFORMAT)

Abstract

The assessment of hemodynamics based on medical image data represents an attractive means in order to enhance diagnostic imaging capabilities, to evaluate clinical outcomes of therapies focusing on the patient’s vascular system, as well as to guide minimally invasive interventional procedures in the catheter lab. We present a first evaluation along with comparisons of algorithmic approaches towards the quantitative determination of blood flow based on 2D angiography image data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oppelt A. Imaging Systems for Medical Diagnostics. Fundamentals, Technical Solutions and Applications for Systems applying Ionizing Radiation, Nuclear Magnetic Resonance and Ultrasound. Erlangen: Publicis Kommunikations Agentur GmbH, GWA; 2005.Google Scholar
  2. 2.
    Strother C, Bender F, Deuerling-Zheng Y, et al. Parametric color coding of digital subtraction angiography. Am J Neuroradiol. 2010; p. 919–24.Google Scholar
  3. 3.
    Shpilfoygel D, Close A, Valentino J, et al. X-ray videodensitometric methods for blood flow and velocity measurement: a critical review of literature. Med Phys. 2000;27(9):2008–23.CrossRefGoogle Scholar
  4. 4.
    Hilal S. Cerebral Hemodynamics Assessed by Angiography. St Louis: CV Mosby Co: Radiology of the Skull and Brain: Angiography; 1974.Google Scholar
  5. 5.
    W¨achter I, Bredno J, Hermans R, et al. Model-based blood flow quantification from rational angiography. Med Image Anal. 2008;12(5):586–602.CrossRefGoogle Scholar
  6. 6.
    Ahmed A, Deuerling-Zheng Y, Strother C, et al. Impact of intra-arterial injection parameters on arterial, capillary, and venous time concenteration curves in a canine model. Am J Neuroradiol. 2009; p. 1337–41.Google Scholar
  7. 7.
    Rosen L, Silverman N. Videodensitometric measurement of blood flow using crosscorrelation technique. Radiology. 1973; p. 305–10.Google Scholar
  8. 8.
    Thompson K, Starmer F, et al RW. Indicator transit time considered as a gamma variate. Circ Res. 1964; p. 502–15.Google Scholar
  9. 9.
    Kelley C. Iterative Methods for Optimization. Philadelphia: SIAM Press; 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sepideh Alassi
    • 1
    • 2
    • 3
  • Markus Kowarschik
    • 2
  • Thomas Pohl
    • 2
  • Harald Köstler
    • 1
  • Ulrich Rude
    • 1
  1. 1.Chair of System SimulationUniversity Erlangen-NurembergErlangen-NurembergDeutschland
  2. 2.Siemens AG, Healthcare SectorForchheimDeutschland
  3. 3.NADA, The Royal Institute Of TechnologyStockholmSweden

Personalised recommendations