Advertisement

Evaluation of Algorithms for Lung Fissure Segmentation in CT Images

  • Alexander Schmidt-RichbergEmail author
  • Jan Ehrhardt
  • Matthias Wilms
  • René Werner
  • Heinz Handels
Chapter
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Automatic detection of the interlobular lung fissures is a crucial task in computer aided diagnostics and intervention planning, and required for example for determination of disease spreading or pulmonary parenchyma quantification. Moreover, it is usually the first step of a subsequent segmentation of the five lung lobes. Due to the clinical relevance, several approaches for fissure detection have been proposed. They aim at finding plane-like structures in the images by analyzing the eigenvalues of the Hessian matrix. Furthermore, these values can be used as features for supervised fissure detection. In this work, two approaches for supervised an three for unsupervised fissure detection are evaluated and compared to each other. The evaluation is based on thoracic CT images acquired with different radiation doses and different resolutions. The experiments show that each approach has advantages and the choice should be made depending on the specific requirements of following algorithm steps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lassen B, Kuhnigk JM, Friman O, et al. Automatic segmentation of lung lobes in CT images based on fissures, vessels, and bronchi. In: Proc IEEE ISBI; 2010. p. 560–563.Google Scholar
  2. 2.
    Pu J, Zheng B, Leader JK, et al. Pulmonary lobe segmentation in CT examinations using implicit surface fitting. IEEE Trans Med Imag. 2009;28(12):1986–96.CrossRefGoogle Scholar
  3. 3.
    van Rikxoort EM, Prokop M, de Hoop BJ, et al. Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans Med Imag. 2010;29(6):1286–96.CrossRefGoogle Scholar
  4. 4.
    Schmidt-Richberg A, Ehrhardt J, Wilms M, et al. Pulmonary lobe segmentation with level sets. In: Proc SPIE; 2012. (in press).Google Scholar
  5. 5.
    Wiemker R, Bulow T, Blaffert T. Unsupervised extraction of the pulmonary in- terlobar fissures from high resolution thoracic CT data. In: Proc CARS; 2005. p. 1121–26.Google Scholar
  6. 6.
    Antiga L. Generalizing vesselness with respect to dimensionality and shape. Insight J. 2007.Google Scholar
  7. 7.
    van Rikxoort EM, van Ginneken B, Klik M, et al. Supervised enhancement filters: application to fissure detection in chest CT scans. IEEE Trans Med Imag. 2008;27(1):1–10.CrossRefGoogle Scholar
  8. 8.
    Frangi AF, Frangi RF, Niessen WJ, et al. Multiscale vessel enhancement filtering. In: Proc MICCAI; 1998. p. 130–7.Google Scholar
  9. 9.
    Ross JC, San’ Jose Est’par R, Kindlmann G, et al. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation. In: Proc MICCAI; 2010. p. 163–71.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Schmidt-Richberg
    • 1
    Email author
  • Jan Ehrhardt
    • 1
  • Matthias Wilms
    • 1
  • René Werner
    • 1
  • Heinz Handels
    • 1
  1. 1.Institute of Medical InformaticsUniversity of LübeckLübeckDeutschland

Personalised recommendations