FluidTracks

Combining Nonlinear Image Registration and Active Contours for Cell Tracking
  • Nico Scherf
  • Christian Ludborzs
  • Konstantin Thierbach
  • Jens-Peer Kuska
  • Ulf-Dietrich Braumann
  • Patrick Scheibe
  • Tilo Pompe
  • Ingmar Glauche
  • Ingo Roeder
Chapter
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Continuous analysis of multi-cellular systems at the single cell level in space and time is one of the fundamental tools in cell biology and experimental medicine to study the mechanisms underlying tissue formation, regeneration and disease progression. We present an approach to cell tracking using nonlinear image registration and level set segmentation that can handle different cell densities, occlusions and cell divisions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Megason SG, Fraser SE. Imaging in systems biology. Cell. 2007;130(5):784–95.CrossRefGoogle Scholar
  2. 2.
    Schroeder T. Long-term single-cell imaging of mammalian stem cells. Nat Methods. 2011;8:S 30–5.CrossRefGoogle Scholar
  3. 3.
    Acton ST, Ray N. Biomedical image analysis: tracking. Synthesis Lectures on Image, Video, and Multimedia Processing. 2006;2(1):1–152.CrossRefGoogle Scholar
  4. 4.
    Meijering E, Dzyubachyk O, Smal I, et al. Tracking in cell and developmental biology. Semin Cell Dev Biol. 2009;20(8):894–902.CrossRefGoogle Scholar
  5. 5.
    Kanade T, Yin Z, Bise R, et al. Cell image analysis: algorithms, system and applications. In: Proc IEEE WACV; 2011. p. 374–81.Google Scholar
  6. 6.
    Hand AJ, Sun T, Barber DC, et al. Automated tracking of migrating cells in phase-contrast video microscopy sequences using image registration. J Microsc. 2009;234(1):62–79.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tokuhisa S, Kaneko K. The time series image snalysis of the HeLa cell using viscous fluid registration. In: Proc ICCSA. Springer; 2010. p. 189–200.Google Scholar
  8. 8.
    Bro-Nielsen M, Gramkow C. Fast fluid registration of medical images. In: Proc VBC; 1996. p. 267–76.Google Scholar
  9. 9.
    Fischer B. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 2004;380:107–24.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kuska JP, Scheibe P, Braumann UD. Fast fluid extensions for image registration algorithms. In: Proc IEEE ICIP; 2008. p. 2408–11.Google Scholar
  11. 11.
    Chan TF, Vese L. Active contours without edges. IEEE Trans Image Proc. 2001;10(2):266–77.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nico Scherf
    • 1
    • 2
  • Christian Ludborzs
    • 1
    • 2
  • Konstantin Thierbach
    • 1
  • Jens-Peer Kuska
    • 2
  • Ulf-Dietrich Braumann
    • 2
  • Patrick Scheibe
    • 2
    • 3
  • Tilo Pompe
    • 4
  • Ingmar Glauche
    • 1
  • Ingo Roeder
    • 1
  1. 1.Institute for Medical Informatics and BiometryDresden University of TechnologyDresdenDeutschland
  2. 2.Interdisciplinary Centre for BioinformaticsUniversity of LeipzigLeipzigDeutschland
  3. 3.Translational Centre for Regenerative MedicineUniversity of LeipzigLeipzigDeutschland
  4. 4.Institute for BiochemistryUniversity of LeipzigLeipzigDeutschland

Personalised recommendations