A Simplified Pipeline for Motion Correction in Dual Gated Cardiac PET

  • Lars Ruthotto
  • Fabian Gigengack
  • Martin Burger
  • Carsten H. Wolters
  • Xiaoyi Jiang
  • Klaus P. Schäfers
  • Jan Modersitzki
Chapter
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Positron Emission Tomography (PET) is a nuclear imaging technique of increasing importance e.g. in cardiovascular investigations. However, cardiac and respiratory motion of the patient degrade the image quality due to acquisition times in the order of minutes. Reconstructions without motion compensation are prone to spatial blurring and affected attenuation correction. These effects can be reduced by gating, motion correction and finally summation of the transformed images. This paper describes a new and systematic approach for the correction of both cardiac and respiratory motion. Key contribution is the splitting of the motion into respiratory and cardiac components, which are then corrected individually. For the considered gating scheme the number of registration problems is reduced by a factor of 3, which considerably simplifies the motion correction pipeline compared to previous approaches. The subproblems are stabilized by averaging cardiac gates for respiratory motion estimation and vice versa. The potential of the novel pipeline is evaluated in a group study on data of 21 human patients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lucignani G. Respiratory and cardiac motion correction with 4D PET imaging: shooting at moving targets. Eur J Nucl Med Mol I. 2009.Google Scholar
  2. 2.
    Buther F, Dawood M, L LS, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med. 2009.Google Scholar
  3. 3.
    Bai W, Brady M. Motion correction and attenuation correction for respiratory gated PET images. IEEE Trans Med Imag. 2011.Google Scholar
  4. 4.
    Dawood M, Büther F, Jiang X, et al. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imag. 2008.Google Scholar
  5. 5.
    Bai W, Brady M. Respiratory motion correction in PET images. Phys Med Biol. 2009.Google Scholar
  6. 6.
    Klein JK, Huesman RH. Four dimensional processing of deformable cardiacd PET data. Med Image Anal. 2002.Google Scholar
  7. 7.
    Gigengack F, Ruthotto L, Burger M, et al. Motion correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans Med Img. 2011.Google Scholar
  8. 8.
    Burger M, Modersitzki J, Ruthotto L. A hyperelastic regularization energy for image registration. SIAM SISC. 2011; p. submitted.Google Scholar
  9. 9.
    Modersitzki J. FAIR: Flexible Algorithms for Image Registration. SIAM; 2009.Google Scholar
  10. 10.
    Kösters T, Schäfers KP, Wübbeling F. EMrecon: an expectation maximization based image reconstruction framework for emission tomography data. Proc IEEE NSS/MIC. 2011.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lars Ruthotto
    • 1
  • Fabian Gigengack
    • 2
    • 3
  • Martin Burger
    • 4
  • Carsten H. Wolters
    • 5
  • Xiaoyi Jiang
    • 3
  • Klaus P. Schäfers
    • 2
  • Jan Modersitzki
    • 1
  1. 1.Institute of Mathematics and Image ComputingUniversity of LübeckLübeckDeutschland
  2. 2.European Insitute for Molecular ImagingUniversity of MünsterMünsterDeutschland
  3. 3.Department of Mathematics and Computer ScienceUniversity of MünsterMünsterDeutschland
  4. 4.Institute for Computational and Applied MathematicsUniversity of MünsterMünsterDeutschland
  5. 5.Institute of Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterDeutschland

Personalised recommendations