Improved Three-Way Split Formulas for Binary Polynomial Multiplication

  • Murat Cenk
  • Christophe Negre
  • M. Anwar Hasan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7118)


In this paper we deal with 3-way split formulas for binary field multiplication with five recursive multiplications of smaller sizes. We first recall the formula proposed by Bernstein at CRYPTO 2009 and derive the complexity of a parallel multiplier based on this formula. We then propose a new set of 3-way split formulas with five recursive multiplications based on field extension. We evaluate their complexities and provide a comparison.


Critical Path Polynomial Multiplication Elliptic Curve Cryptography Inductive Relation Arithmetic Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bernstein, D.J.: Batch Binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Cenk, M., Koç, Ç., Özbudak, F.: Polynomial Multiplication over Finite Fields Using Field Extensions and Interpolation. In: 19th IEEE Symposium on Computer Arithmetic, ARITH 2009, pp. 84–91 (2009)Google Scholar
  3. 3.
    ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fan, H., Hasan, M.A.: A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields. IEEE Transactions on Computers 56(2), 224–233 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fan, H., Sun, J., Gu, M., Lam, K.-Y.: Overlap-free Karatsuba-Ofman Polynomial Multiplication Algorithm (May 2007)Google Scholar
  6. 6.
    Karatsuba, A.A.: The Complexity of Computations. In: Proceedings of the Steklov Institute of Mathematics, vol. 211, pp. 169–183 (1995)Google Scholar
  7. 7.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Sunar, B.: A generalized method for constructing subquadratic complexity GF(2k) multipliers. IEEE Transactions on Computers 53, 1097–1105 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Toom, A.L.: The Complexity of a Scheme of Functional Elements Realizing the Multiplication of Integers. Soviet Mathematics 3, 714–716 (1963)zbMATHGoogle Scholar
  12. 12.
    Winograd, S.: Arithmetic Complexity of Computations. Society For Industrial & Applied Mathematics, U.S. (1980)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Murat Cenk
    • 1
  • Christophe Negre
    • 1
    • 2
    • 3
  • M. Anwar Hasan
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooCanada
  2. 2.LIRMMUniversité Montpellier 2France
  3. 3.Team DALIUniversité de PerpignanFrance

Personalised recommendations