Advertisement

Two-Step Analysis of the Fetal Heart Rate Signal as a Predictor of Distress

  • Robert Czabanski
  • Janusz Wrobel
  • Janusz Jezewski
  • Michal Jezewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7197)

Abstract

Cardiotocography is a biophysical method of fetal state assessment based on analysis of fetal heart rate signal (FHR). The computerized fetal monitoring systems provide a quantitative evaluation of FHR signals, however the effective methods for fetal outcome prediction are still needed. The paper proposes a two-step analysis of fetal heart rate recordings that allows for prediction of the fetal distress. The first step consists in classification of FHR signals with Weighted Fuzzy Scoring System. The fuzzy inference that corresponds to the clinical interpretation of signals based on the FIGO guidelines enables to designate recordings indicating the fetal wellbeing. In the second step, the remained recordings are classified using Lagrangian Support Vector Machines (LSVM). The evaluation of the proposed procedure using data collected with computerized fetal surveillance system confirms its efficacy in predicting the fetal distress.

Keywords

Fetal heart rate monitoring fuzzy systems support vector machines signal classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardes, J., Costa-Pereira, A., de Campos, D.A., van Geijn, H.P., Pereira-Leite, L.: Evaluation of interobserver agreement of cardiotocograms. International Journal of Gynecology & Obstetrics 57(1), 33–37 (1997)CrossRefGoogle Scholar
  2. 2.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  3. 3.
    Czabanski, R., Jezewski, M., Wrobel, J., Jezewski, J., Horoba, K.: Predicting the risk of low-fetal birth weight from cardiotocographic signals using ANBLIR system with deterministic annealing and ε-insensitive learning. IEEE Transactions on Information Technology in Biomedicine 14(4), 1062–1074 (2010)CrossRefGoogle Scholar
  4. 4.
    Fischer, W.M., Stude, I., Brandt, H.: Ein vorschlag zur beurteilung des antepartalen kardiotokogramms. Geburtshilfe Perinatology 180, 117–123 (1976)Google Scholar
  5. 5.
    Hammacher, K.: Einfuhrung in die cardiotokographie, pp. 5953–1109. Hewlett Packard (1978)Google Scholar
  6. 6.
    Jezewski, J., Wrobel, J., Horoba, K., Kupka, T., Matonia, A.: Centralised fetal monitoring system with hardware-based data ow control. In: Proceedings of 3rd International Conference MEDSIP, Glasgow, pp. 51–54 (2006)Google Scholar
  7. 7.
    Jezewski, M., Czabanski, R., Wrobel, J., Horoba, K.: Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybernetics and Biomedical Engineering 30(4), 39–47 (2010)Google Scholar
  8. 8.
    Krupa, N., Ma, M., Zahedi, E., Ahmed, S., Hassan, F.: Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine. BioMedical Engineering OnLine 10(6), 1–15 (2011)Google Scholar
  9. 9.
    Mangasarian, O.L., Musicant, D.R.: Lagrangian support vector machines. Journal of Machine Learning Research 1, 161–177 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Rooth, G.: Guidelines for the use of fetal monitoring. International Journal of Obstetrics & Gyneacology 25(3), 159–167 (1987)Google Scholar
  11. 11.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Czabanski
    • 1
  • Janusz Wrobel
    • 2
  • Janusz Jezewski
    • 2
  • Michal Jezewski
    • 1
  1. 1.Institute of ElectronicsSilesian University of TechnologyGliwicePoland
  2. 2.Biomedical Signal Processing Dept.Institute of Medical Technology and EquipmentZabrzePoland

Personalised recommendations