FD Covers and Universal Complements of Simple Projections

  • Stephen J. Hegner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7153)

Abstract

The constant-complement strategy, in which the admissible updates to a given view are those which hold a second complementary view constant, remains one of the most attractive formalisms for identifying suitable translation mechanisms for updates to views of database schemata. However, in general, it suffers from the drawback that the reflections of view updates to the main schema can depend upon the choice of complement in various ways. To overcome this drawback completely, a special kind of complement, called a universal complement, is required. In this paper, sufficient conditions for the existence of such a complement are established for a classical but nevertheless very important setting — views defined by simple projection of a universal relational schema constrained by functional dependencies (FDs). Certain uniqueness properties of covers of these dependencies prove critical in the characterization. The results are extended to quasi-universal complements, which are unique up to exchange of equivalent attributes, thus recapturing certain situations for which unique covers do not exist.

Keywords

Relational Schema Complementary Pair Unique Cover Simple Projection Complex Triple 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Atzeni, P., Antonellis, V.D.: Relational Database Theory. Benjamin/Cummings (1993)Google Scholar
  3. 3.
    Bancilhon, F., Spyratos, N.: Independent components of databases. In: Proceedings of the Seventh International Conference on Very Large Data Bases, pp. 398–408 (1981)Google Scholar
  4. 4.
    Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans. Database Systems 6, 557–575 (1981)CrossRefMATHGoogle Scholar
  5. 5.
    Bernstein, P.A.: Synthesizing third normal form relations from functional dependencies. ACM Trans. Database Syst. 1(4), 277–298 (1976)CrossRefGoogle Scholar
  6. 6.
    Biskup, J., Dayal, U., Bernstein, P.A.: Synthesizing independent database schemas. In: Proceedings of the ACM-SIGMOD 1979 Conference on Management of Data, pp. 143–151 (1979)Google Scholar
  7. 7.
    Biskup, J., Demetrovics, J., Libkin, L., Muchnik, I.B.: On relational database schemes having unique minimal key. Elektronische Informationsverarbeitung und Kybernetik 27(4), 217–225 (1991)MATHGoogle Scholar
  8. 8.
    Bogart, K.P.: Introductory Combinatorics. Pitman (1983)Google Scholar
  9. 9.
    Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updatable views. In: Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Chicago, Illinois, USA, June 26-28, pp. 338–347 (2006)Google Scholar
  10. 10.
    Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)Google Scholar
  11. 11.
    Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans. Programming Languages and Systems 29(3) (2007)Google Scholar
  12. 12.
    Hegner, S.J.: Foundations of Canonical Update Support for Closed Database Views. In: Kanellakis, P.C., Abiteboul, S. (eds.) ICDT 1990. LNCS, vol. 470, pp. 422–436. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Hegner, S.J.: An order-based theory of updates for closed database views. Ann. Math. Art. Intell. 40, 63–125 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hegner, S.J.: The complexity of embedded axiomatization for a class of closed database views. Ann. Math. Art. Intell. 46, 38–97 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hegner, S.J.: Characterization of Optimal Complements of Database Views Defined by Projection. In: Schewe, K.D., Thalheim, B. (eds.) 4th International Workshop, SDKB 2010, Bordeaux, France. Revised Selected Papers. LNCS, vol. 6384, pp. 73–95. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Hull, R.: Finitely specifiable implicational dependency families. J. Assoc. Comp. Mach. 31(2), 210–226 (1984)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jacobs, B.E., Aronson, A.R., Klug, A.C.: On interpretations of relational languages and solutions to the implied constraint problem. ACM Trans. Database Systems 7(2), 291–315 (1982)CrossRefMATHGoogle Scholar
  18. 18.
    Lechtenbörger, J.: The impact of the constant complement approach towards view updating. In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, San Diego, California, June 09-11, pp. 49–55 (2003)Google Scholar
  19. 19.
    Lechtenbörger, J., Vossen, G.: On the computation of relational view complements. ACM Trans. Database Systems 28, 175–208 (2003)CrossRefGoogle Scholar
  20. 20.
    Maier, D.: Minimum covers in the relational database model. J. ACM 27(4), 664–674 (1980)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)Google Scholar
  22. 22.
    Mann, H.B., Ryser, H.J.: Systems of distinct representatives. American Math. Monthly 60(6), 297–401 (1953)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Marcus, M.: A Survey of Finite Mathematics. Dover (1993)Google Scholar
  24. 24.
    Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the Relational Database Model. Springer, Heidelberg (1989)CrossRefMATHGoogle Scholar
  25. 25.
    Rissanen, J.: Independent components of relations. ACM Trans. Database Systems 2(4), 317–325 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephen J. Hegner
    • 1
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden

Personalised recommendations