Iris Segmentation: State of the Art and Innovative Methods

  • Ruggero Donida Labati
  • Angelo Genovese
  • Vincenzo Piuri
  • Fabio Scotti
Part of the Intelligent Systems Reference Library book series (ISRL, volume 37)

Abstract

Iris recognition is nowadays considered as one of the most accurate biometric recognition techniques. However, the overall performances of such systems can be reduced in non-ideal conditions, such as unconstrained, on-the-move, or non-collaborative setups.

In particular, a critical step of the recognition process is the segmentation of the iris pattern in the input face/eye image. This process has to deal with the fact that the iris region of the eye is a relatively small area, wet and constantly in motion due to involuntary eye movements. Moreover, eyelids, eyelashes and reflections are occlusions of the iris pattern that can cause errors in the segmentation process. As a result, an incorrect segmentation can produce erroneous biometric recognitions and seriously reduce the final accuracy of the system.

This chapter reviews current state-of-the-art iris segmentation methods in different applicative scenarios. Boundary estimation methods will be discussed, along with methods designed to remove reflections and occlusions, such as eyelids and eyelashes. In the last section, the results of the main described methods applied to public image datasets are reviewed and commented.

Keywords

Active Contour Iris Image Equal Error Rate Biometric System Iris Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Biometrics Group, http://www.ibgweb.com
  2. 2.
    ISO/IEC Standard 19794-6. Information technology - biometric data interchange formats, part 6: Iris image data. Tech. rep., International Standards Organization (2005)Google Scholar
  3. 3.
    Aligholizadeh, M.J., Javadi, S., Sabbaghi-Nadooshan, R., Kangarloo, K.: An effective method for eyelashes segmentation using wavelet transform. In: 2011 International Conference on Biometrics and Kansei Engineering (ICBAKE), pp. 185–188 (2011)Google Scholar
  4. 4.
    de Almeida, P.: A knowledge-based approach to the iris segmentation problem. Image Vision Comput. 28(2), 238–245 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boles, W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)CrossRefGoogle Scholar
  6. 6.
    Bowyer, K.W., Flynn, P.J.: The ND-IRIS-0405 Iris Image Dataset, http://www.nd.edu/cvrl/papers/ND-Iris-0405.pdf
  7. 7.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: A survey. Comput. Vis. Image Underst. 110, 281–307 (2008)CrossRefGoogle Scholar
  8. 8.
    Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories and Applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, vol. ch. 5, pp. 79–96. Springer, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Broussard, R., Kennell, L., Soldan, D., Ives, R.: Using artificial neural networks and feature saliency techniques for improved iris segmentation. In: International Joint Conference on Neural Networks (IJCNN 2007), pp. 1283–1288 (2007)Google Scholar
  10. 10.
    Camus, T., Wildes, R.: Reliable and fast eye finding in close-up images. In: International Conference on Pattern Recognition, vol. 1, pp. 389–394 (2002)Google Scholar
  11. 11.
    Chen, Y., Adjouadi, M., Han, C., Wang, J., Barreto, A., Rishe, N., Andrian, J.: A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image Vision Comput. 28, 261–269 (2010)CrossRefGoogle Scholar
  12. 12.
    Cho, D.H., Park, K.R., Rhee, D.W.: Real-time iris localization for iris recognition in cellular phone. In: International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, & International Workshop on Self-Assembling Wireless Networks, pp. 254–259 (2005)Google Scholar
  13. 13.
    Cho, D.H., Park, K.R., Rhee, D.W., Kim, Y., Yang, J.: Pupil and iris localization for iris recognition in mobile phones. In: Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 197–201 (2006)Google Scholar
  14. 14.
    Chou, C.T., Shih, S.W., Chen, W.S., Cheng, V., Chen, D.Y.: Non-orthogonal view iris recognition system. IEEE Trans. Circuits Syst. Video Technol. 20(3), 417–430 (2010)CrossRefGoogle Scholar
  15. 15.
    Crihalmeanu, S., Ross, A., Schuckers, S., Hornak, L.: A Protocol for Multibiometric Data Acquisition, Storage and Dissemination. Tech. rep., WVU. Lane Department of Computer Science and Electrical Engineering (2007)Google Scholar
  16. 16.
    Daugman, J.: Statistical richness of visual phase information: Update on recognizing persons by iris patterns. Int. J. Comput. Vision 45, 25–38 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14, 21–30 (2002)CrossRefGoogle Scholar
  18. 18.
    Daugman, J.: Results from 200 billion iris cross-comparisons. Tech. Rep. UCAM-CL-TR-635. University of Cambridge, Computer Laboratory (2005), http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-635.pdf
  19. 19.
    Daugman, J.: New methods in iris recognition. IEEE Trans. Syst., Man, Cybern. B, Cybern. 37(5), 1167–1175 (2007)CrossRefGoogle Scholar
  20. 20.
    Daugman, J.: Iris recognition at airports and border-crossings. In: Li, S.Z., Jain, A.K. (eds.) Encyclopedia of Biometrics, pp. 819–825 (2009)Google Scholar
  21. 21.
    Daugman, J., Malhas, I.: Iris recognition border-crossing system in the UAE. International Airport Rev. 2 (2004)Google Scholar
  22. 22.
    de Martin-Roche, D., Sanchez-Avila, C., Sanchez-Reillo, R.: Iris recognition for biometric identification using dyadic wavelet transform zero-crossing. In: IEEE International Carnahan Conference on Security Technology, pp. 272–277 (2001)Google Scholar
  23. 23.
    Donida Labati, R., Piuri, V., Scotti, F.: Agent-based image iris segmentation and multiple views boundary refining. In: Proceedings of the 3rd IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2009), pp. 204–210. IEEE Press, Piscataway (2009)Google Scholar
  24. 24.
    Donida Labati, R., Piuri, V., Scotti, F.: Neural-based iterative approach for iris detection in iris recognition systems. In: IEEE Symposium on Computational Intelligence for Security and Defence Applications, pp. 1–6 (2009) ISBN: 978-1-4244-3763-4 Google Scholar
  25. 25.
    Donida Labati, R., Scotti, F.: Noisy iris segmentation with boundary regularization and reflections removal. Image Vision Comput. 28(2), 270–277 (2010) 0262-8856 CrossRefGoogle Scholar
  26. 26.
    Du, Y., Arslanturk, E., Zhou, Z., Belcher, C.: Video-based non-cooperative iris image segmentation. IEEE Trans. Syst., Man, Cybern. B, Cybern. 41(1), 64–74 (2011)CrossRefGoogle Scholar
  27. 27.
    Feng, X., Fang, C., Ding, X., Wu, Y.: Iris localization with dual coarse-to-fine strategy. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 553–556 (2006)Google Scholar
  28. 28.
    Fierrez, J., Ortega-Garcia, J., Toledano, D.T., Gonzalez-Rodriguez, J.: BioSec baseline corpus: A multimodal biometric database. Pattern Recogn. 40(4), 1389–1392 (2007)MATHCrossRefGoogle Scholar
  29. 29.
    Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  30. 30.
    Gamassi, M., Lazzaroni, M., Misino, M., Piuri, V., Sana, D., Scotti, F.: Quality assessment of biometric systems: a comprehensive perspective based on accuracy and performance measurement. IEEE Trans. Instrum. Meas. 54(4), 1489–1496 (2005)CrossRefGoogle Scholar
  31. 31.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2006)Google Scholar
  32. 32.
    He, Z., Tan, T., Sun, Z.: Iris localization via pulling and pushing. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 366–369 (2006)Google Scholar
  33. 33.
    He, Z., Tan, T., Sun, Z., Qiu, X.: Robust eyelid, eyelash and shadow localization for iris recognition. In: 15th IEEE International Conference on Image Processing (ICIP 2008), pp. 265–268 (2008)Google Scholar
  34. 34.
    He, Z., Tan, T., Sun, Z., Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1670–1684 (2009)CrossRefGoogle Scholar
  35. 35.
    Huang, S.C., Wu, Y.L., Hung, W.C., Tang, C.Y.: Point-of-regard measurement via iris contour with one eye from single image. In: IEEE International Symposium on Multimedia (ISM), pp. 336–341 (2010)Google Scholar
  36. 36.
    Institute of Automation, Chinese Academy of Sciences: CASIA Iris Database, http://biometrics.idealtest.org/
  37. 37.
    Ives, R., Kennell, L., Gaunt, R., Etter, D.: Iris segmentation for recognition using local statistics. In: Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, pp. 859–863 (2005)Google Scholar
  38. 38.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14, 4–20 (2004)CrossRefGoogle Scholar
  39. 39.
    Jarjes, A., Wang, K., Mohammed, G.: Improved greedy snake model for detecting accurate pupil contour. In: 3rd Internatoional Conference on Advanced Computer Control (ICACC 2011), pp. 515–519 (2011)Google Scholar
  40. 40.
    Jeong, D.S., Hwang, J.W., Kang, B.J., Park, K.R., Won, C.S., Park, D.K., Kim, J.: A new iris segmentation method for non-ideal iris images. Image Vision Comput. 28, 254–260 (2010)CrossRefGoogle Scholar
  41. 41.
    Jin, L., Xiao, F., Haopeng, W.: Iris image segmentation based on k-means cluster. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 3, pp. 194–198 (2010)Google Scholar
  42. 42.
    Kennell, L., Ives, R., Gaunt, R.: Binary morphology and local statistics applied to iris segmentation for recognition. In: IEEE International Conference on Image Processing (ICIP 2006), pp. 293–296 (2006)Google Scholar
  43. 43.
    Li, P., Liu, X., Xiao, L., Song, Q.: Robust and accurate iris segmentation in very noisy iris images. Image Vision Comput. 28, 246–253 (2010)CrossRefGoogle Scholar
  44. 44.
    Li, Y.H., Savvides, M.: Iris recognition, overview. In: Li, S.Z., Jain, A.K. (eds.) Encyclopedia of Biometrics, pp. 810–819 (2009)Google Scholar
  45. 45.
    Liu-Jimenez, J., Sanchez-Reillo, R., Fernandez-Saavedra, B.: Iris biometrics for embedded systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(2), 274–282 (2011)CrossRefGoogle Scholar
  46. 46.
    Luengo-Oroz, M.A., Faure, E., Angulo, J.: Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image Vision Comput. 28, 278–284 (2010)CrossRefGoogle Scholar
  47. 47.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process. 13, 739–750 (2004)CrossRefGoogle Scholar
  48. 48.
    Masek, L., Kovesi, P.: Matlab source code for a biometric identification system based on iris patterns (2003)Google Scholar
  49. 49.
    Phillips, P., Bowyer, K., Flynn, P., Liu, X., Scruggs, W.: The iris challenge evaluation 2005. In: IEEE International Conference on Biometrics: Theory, Applications and Systems, pp. 1–8 (2008)Google Scholar
  50. 50.
    Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 947–954 (2005)Google Scholar
  51. 51.
    Phillips, P., Moon, H., Rauss, P., Rizvi, S.: The feret evaluation methodology for face-recognition algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 137–143 (1997)Google Scholar
  52. 52.
    Phillips, P., Scruggs, W., O’Toole, A., Flynn, P., Bowyer, K., Schott, C., Sharpe, M.: FRVT 2006 and ICE 2006 Large-Scale Experimental Results. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 831–846 (2010)CrossRefGoogle Scholar
  53. 53.
    Proença, H.: Iris recognition: On the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1502–1516 (2010)CrossRefGoogle Scholar
  54. 54.
    Proença, H., Alexandre, L.A.: UBIRIS: A Noisy Iris Image Database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)Google Scholar
  55. 55.
    Proença, H., Alexandre, L.: Iris segmentation methodology for non-cooperative recognition. IEEE Proceedings on Vision, Image and Signal Processing 153(2), 199–205 (2006)CrossRefGoogle Scholar
  56. 56.
    Proença, H., Alexandre, L.: The NICE.I: Noisy Iris Challenge Evaluation - Part I. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–4 (2007)Google Scholar
  57. 57.
    Proença, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.: The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-the-Move and At-a-Distance. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1529–1535 (2010)CrossRefGoogle Scholar
  58. 58.
    Puhan, N., Sudha, N., Jiang, X.: Robust eyeball segmentation in noisy iris images using Fourier spectral density. In: 6th International Conference on Information, Communications and Signal Processing, pp. 1–5 (2007)Google Scholar
  59. 59.
    Pundlik, S., Woodard, D., Birchfield, S.: Non-ideal iris segmentation using graph cuts. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6 (2008)Google Scholar
  60. 60.
    Ren, X., Peng, Z., Zeng, Q., Peng, C., Zhang, J., Wu, S., Zeng, Y.: An improved method for Daugman’s iris localization algorithm. Comput. Biol. Med. 38(1), 111–115 (2008)CrossRefGoogle Scholar
  61. 61.
    RNCOS (ed.): Electronics Security: Global Biometric Forecast to 2012 (2010)Google Scholar
  62. 62.
    Rongnian, T., Shaojie, W.: Improving iris segmentation performance via borders recognition. In: 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 2, pp. 580–583 (2011)Google Scholar
  63. 63.
    Ross, A., Shah, S.: Segmenting non-ideal irises using geodesic active contours. In: 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, pp. 1–6 (2006)Google Scholar
  64. 64.
    Ryan, W., Woodard, D., Duchowski, A., Birchfield, S.: Adapting starburst for elliptical iris segmentation. In: IEEE International Conference on Biometrics: Theory, Applications and Systems, pp. 1–7 (2008)Google Scholar
  65. 65.
    Sankowski, W., Grabowski, K., Napieralska, M., Zubert, M., Napieralski, A.: Reliable algorithm for iris segmentation in eye image. Image Vision Comput. 28, 231–237 (2010)CrossRefGoogle Scholar
  66. 66.
    Schuckers, S., Lopez, P.M., Johnson, P., Sazonova, N., Hua, F., Lazarick, R., Miles, C., Talbassi, E., Sazonov, E., Ross, A., Hornak, L.: Quality–face/iris research ensemble (Q-FIRE) data collection steps, technical report. Clarkson University, Dept. of Electrical and Computer Engineering (2010)Google Scholar
  67. 67.
    Schuckers, S., Lopez, P.M., Johnson, P., Sazonova, N., Hua, F., Lazarick, R., Miles, C., Talbassi, E., Sazonov, E., Ross, A., Hornak, L.: Quality–face/iris research ensemble (Q-FIRE) dataset overview, technical report. Clarkson University, Dept. of Electrical and Computer Engineering (2010)Google Scholar
  68. 68.
    Shah, S., Ross, A.: Generating synthetic irises by feature agglomeration. In: IEEE International Conference on Image Processing, pp. 317–320 (2006)Google Scholar
  69. 69.
    Shah, S., Ross, A.: Iris segmentation using geodesic active contours. IEEE Trans. Inf. Forensics Security 4(4), 824–836 (2009)CrossRefGoogle Scholar
  70. 70.
    Shamsi, M., Saad, P., Ibrahim, S., Kenari, A.: Fast algorithm for iris localization using Daugman circular integro differential operator. In: International Conference of Soft Computing and Pattern Recognition, pp. 393–398 (2009)Google Scholar
  71. 71.
    Sreecholpech, C., Thainimit, S.: A robust model-based iris segmentation. In: International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2009), pp. 599–602 (2009)Google Scholar
  72. 72.
    Sun, Z., Tan, T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009)CrossRefGoogle Scholar
  73. 73.
    Sundaram, R., Dhara, B., Chanda, B.: A fast method for iris localization. In: Second International Conference on Emerging Applications of Information Technology, pp. 89–92 (2011)Google Scholar
  74. 74.
    Tan, T., He, Z., Sun, Z.: Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vision Comput. 28, 223–230 (2010)CrossRefGoogle Scholar
  75. 75.
    Tian, Q.C., Pan, Q., Cheng, Y.M., Gao, Q.X.: Fast algorithm and application of hough transform in iris segmentation. In: International Conference on Machine Learning and Cybernetics, vol. 7, pp. 3977–3980 (2004)Google Scholar
  76. 76.
    Trucco, E., Razeto, M.: Robust iris location in close-up images of the eye. Pattern Analysis and Applications 8, 247–255 (2005)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 1, pp. 511–518 (2001)Google Scholar
  78. 78.
    West Virginia University: Biometric dataset collections, http://www.citer.wvu.edu/biometric_dataset_collections
  79. 79.
    Wildes, R.P.: Iris recognition: an emerging biometric technology. Proceedings of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  80. 80.
    Xu, G., Zhang, Z., Ma, Y.: Improving the performance of iris recogniton system using eyelids and eyelashes detection and iris image enhancement. In: 5th IEEE International Conference on Cognitive Informatics (ICCI 2006), vol. 2, pp. 871–876 (2006)Google Scholar
  81. 81.
    Yan, Y., Xie, M.: Eyelid and eyelash detection method based on morphology. In: 2nd International Conference on Computer and Automation Engineering (ICCAE 2010), vol. 1, pp. 678–681 (2010)Google Scholar
  82. 82.
    Zhang, X., Sun, Z., Tan, T.: Texture removal for adaptive level set based iris segmentation. In: 17th IEEE International Conference on Image Processing (ICIP 2010), pp. 1729–1732 (2010)Google Scholar
  83. 83.
    Zuo, J., Schmid, N.: On a methodology for robust segmentation of non ideal iris images. IEEE Trans. Syst., Man, Cybern. B, Cybern. 40(3), 703–718 (2010)CrossRefGoogle Scholar
  84. 84.
    Zuo, J., Schmid, N.A., Chen, X.: On generation and analysis of synthetic iris images. IEEE Trans. Inf. Forensics Security 2(1), 77–90 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Ruggero Donida Labati
    • 1
  • Angelo Genovese
    • 1
  • Vincenzo Piuri
    • 1
  • Fabio Scotti
    • 1
  1. 1.Department of Information TechnologyUniversità degli Studi di MilanoCrema (CR)Italy

Personalised recommendations