Seaweed Biology pp 383-406

Part of the Ecological Studies book series (ECOLSTUD, volume 219)

Global Seaweed Biogeography Under a Changing Climate: The Prospected Effects of Temperature

Chapter

Abstract

Temperature is one of the most important factors controlling the biogeography of seaweeds. To identify worldwide prospective distributional shifts of major biogeographical regions under a global change scenario, we applied a macroecological modeling approach. We compared the borders of biogeographical regions between present and end of the century sea surface temperatures (SST) taken from global climate model simulations and drew conclusions for distributional changes. All regions will extend towards the poles. As a consequence, the tropical region will widen considerably. However, there will be almost no change in the northern extent of the Antarctic region. According to the model data, the annual SST gradient will change along extensive coastlines creating broad transitional regions, some of which contain high seaweed genus diversity. As a consequence, the structure of the seaweed assemblages in these biogeographical regions will probably be reorganized.

References

  1. Andersen GS, Stehen H, Christie H, Fredriksen S, Moy FE (2011) Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: Implications for forest recovery. J Mar Biol 2011:Article ID 690375Google Scholar
  2. Ateweberhan M, Bruggemann JH, Breeman AM (2005) Seasonal patterns of biomass, growth and reproduction in Dictyota cervicornis and Stoechospermum polypodioides (Dictyotales, Phaeophyta) on a shallow reef flat in the southern Red Sea (Eritrea). Bot Mar 48:8–17Google Scholar
  3. Augustin L, Barbante C, Barnes PRF, Barnola JM, Bigler M, Castellano E, Cattani O, Chappellaz J, Dahl-Jensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Flückiger J, Hansson ME, Huybrechts P, Jugie G, Johnsen SJ, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov VY, Littot GC, Longinelli A, Lorrain R, Maggi V, Masson-Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel DA, Petit J-R, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tabacco IE, Udisti R, van de Wal RSW, van den Broeke M, Weiss J, Wilhelms F, Winther JG, Wolff EW, Zucchelli M (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628PubMedGoogle Scholar
  4. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coastal Shelf Sci 80:435–471Google Scholar
  5. Beaugrand G, Reid PC (2003) Long-term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biol 9:801–817Google Scholar
  6. Berkelmans R (2009) Bleaching and mortality thresholds: How much is too much? In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns and processes, causes and consequences, Ecol Studies, vol 205. Springer, New York, pp 103–120Google Scholar
  7. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166Google Scholar
  8. Bischoff B, Wiencke C (1995) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol 30:19–27Google Scholar
  9. Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535Google Scholar
  10. Bischoff-Bäsmann B, Bartsch I, Xia B, Wiencke C (1997) Temperature responses of macroalgae from the tropical island Hainan (P.R. China). Phycol Res 45:91–104Google Scholar
  11. Bolton JJ (1983) Ecoclinal variation in Ectocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survival limits. Mar Biol 73:131–138Google Scholar
  12. Bolton JJ (1996) Patterns of species diversity and endemism in comparable temperate brown algal floras. Hydrobiologia 327:173–178Google Scholar
  13. Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94Google Scholar
  14. Bradley RS (1985) Quaternary paleoclimatology. Allan and Unwin, LondonGoogle Scholar
  15. Braun M, Gossmann H (2002) Glacial changes in the areas of Admiralty Bay and Potter Cove, King George Island, Maritime Antarctica. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes, Ecol Studies, vol 154. Springer, Heidelberg, pp 75–90Google Scholar
  16. Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresunters 42:199–241Google Scholar
  17. Breeman AM (1990) Expected effects of changing seawater temperatures on the geographic distribution of seaweed species. In: Beukema JJ et al (eds) Expected effects of climatic change on marine coastal ecosystems. Kluwer Academic, Netherlands, pp 69–76Google Scholar
  18. Briggs JC (1974) Marine zoogeography. McGraw-Hill, New YorkGoogle Scholar
  19. Briggs JC (1995) Global biogeography. Elsevier, AmsterdamGoogle Scholar
  20. Brodie J, Bartsch I, Neefus C, Orfanidis S, Bray T, Mathieson AC (2007) New insights into the cryptic diversity of the North Atlantic–Mediterranean ‘Porphyra leucosticta’ complex: P. olivii sp. nov. and P. rosengurttii (Bangiales, Rhodophyta). Eur J Phycol 42:3–28Google Scholar
  21. Cambridge ML, Breeman AM, van den Hoek C (1990) Temperature responses limiting the geographical distribution of two temperate species of Cladophora (Cladophorales; Chlorophyta) in the North Atlantic. Phycologia 29:74–85Google Scholar
  22. Campana G, Zacher K, Fricke A, Molis M, Wulff A, Wiencke C (2011) Drivers of colonization and succession in polar benthic macro- and microalgal communities. In: Wiencke C (ed) Biology of polar benthic algae. de Gruyter, Berlin, pp 299–320Google Scholar
  23. Camus PA (2001) Biogeografía marina de Chile continental. Rev Chi Hist Nat 74:587–617Google Scholar
  24. Carpenter RC (1986) Partitioning herbivory and its effects on coral reefs algal communities. Ecol Monogr 56:345–363Google Scholar
  25. CLIMAP Project Members (1981) Seasonal reconstructions of the earth’s surface at the last glacial maximum. The Geological Society of America, Map and Chart Service MC-36, Washington DCGoogle Scholar
  26. Collins M, An S-I, Cai W, Ganachaud A, Guilyardi JF-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific ocean and El Niño. Nat Geosci 3:391–397Google Scholar
  27. Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544PubMedGoogle Scholar
  28. Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Trends Ecol Evol 10:1096–1111Google Scholar
  29. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211Google Scholar
  30. Davison IR, Greene RM, Podolak EJ (1991) Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar Biol 110:449–454Google Scholar
  31. Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JE, Steneck RS S (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Townsville, Queensland, pp 153–192Google Scholar
  32. Díez I, Muguerza N, Santolaria A, Ganzedo U, Gorostiaga JM (2012) Seaweed assemblage changes in the Eastern Cantabrian Sea and their potential relationship to climate change. Estuar, Coastal Shelf Sci 99:108–120Google Scholar
  33. Dring MJ (1984) Photoperiodism and phycology. In: Round F, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, pp 159–192Google Scholar
  34. Edgar GJ, Banks SA, Brandt M, Bustamante RH, Chiriboga A, Earle SA, Garske LE, Glynn PW, Grove JS, Henderson S, Hickmam CP, Miller KA, Rivera F, Wellington GM (2010) El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Global Change Biol 10:2876–2890Google Scholar
  35. Eggert A, Visser RJW, van Hasselt PR, Breeman AM (2006) Differences in acclimation potential of photosynthesis in seven isolates of the tropical to warm temperate macrophyte Valonia utricularis (Chlorophyta). Phycologia 45:546–556Google Scholar
  36. Fredersdorf J, Müller R, Becker S, Wiencke W, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492PubMedGoogle Scholar
  37. Fricke A, Molis M, Wiencke C, Valdivia N, Chapman AS (2011) Effects of UV radiation on the structure of Arctic macrobenthic communities. Polar Biol 34:995–1009Google Scholar
  38. Gerard VA, Du Bois KR (1988) Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Mar Biol 97:575–580Google Scholar
  39. Giaccone G (1972) Struttura, ecologia e corologia dei popolamenti a Laminarie dell stretto di Messina e del mare di Alboran. Mem Biol Mar Ocean NS 2:37–49Google Scholar
  40. Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S (2007) Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc Nat Acad Sci USA 104:16576–16580PubMedCentralPubMedGoogle Scholar
  41. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009Google Scholar
  42. Hansen J, Sato M, Ruedy R, Lo K, Lea DW (2006) Global temperature change. Proc Natl Acad Sci 103:14288–14293PubMedCentralPubMedGoogle Scholar
  43. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241PubMedGoogle Scholar
  44. Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, Herbert RJH, Jenkins SR, Thompson RC, Genner MJ, Southward AJ (2008) Complex interactions in a changing world: Responses of rocky shore communities to recent climate change. Climate Res 37:123–133Google Scholar
  45. Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:S67–S76Google Scholar
  46. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedGoogle Scholar
  47. Huvé H (1955) Présence de Laminaria rodriguezii Bornet sur les côtes de Mediterraneée. Rec Trav Stat Mar Endoume 15:73, 89 + 11 platesGoogle Scholar
  48. Johannessen O, Bengtsson L, Miles M, Kuzmina S, Semenov V, Alekseev G, Nagurnyi A, Zakharov V, Bobylev L, Pettersson L (2004) Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus 56(A):328–341Google Scholar
  49. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol 400:17–32Google Scholar
  50. Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162Google Scholar
  51. Karsten U, Wulff A, Roleda M, Müller R, Steinhoff FS, Fredersdorf J, Wiencke C (2011) Physiological responses of polar benthic algae to ultraviolet radiation. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 271–298Google Scholar
  52. Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488PubMedGoogle Scholar
  53. Kirihara S, Nakamura T, Kon N, Fujita D, Notoya M (2006) Recent fluctuations in distribution and biomass of cold and warm temperature species of Laminarialean algae at Cape Ohma, northern Honshu, Japan. J Appl Phycol 18:521–527Google Scholar
  54. Knutti R, Flückinger J, Stocker TF, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430:851–856PubMedGoogle Scholar
  55. Kübler JE, Davison IR (1995) Thermal acclimation of light-use characteristics of Chondrus crispus (Rhodophyta). Eur J Phycol 30:189–195Google Scholar
  56. Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229Google Scholar
  57. Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM (2007) Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Change Biol 13:2592–2604Google Scholar
  58. Liu PJ, Lin SM, Fan TY, Meng PJ, Shao KT, Lin HJ (2009) Rates of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. Limnol Oceanogr 54:1167–1175Google Scholar
  59. Lüning K (1990) Seaweeds: Their environment, biogeography and ecophysiology. Wiley, New YorkGoogle Scholar
  60. Manzello DP, Berkelmans R, Hendee JC (2007) Coral bleaching indices and thresholds for the Florida reef tract, Bahamas, and St. Croix, US Virgin Islands. Mar Pollut Bull 54:1923–1931PubMedGoogle Scholar
  61. Martinson DG, Stammerjohn SE, Iannuzzi RA, Smith RC, Vernet M (2008) Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep Sea Res II 55:1964–1987Google Scholar
  62. Merzouk A, Johnson LE (2011) Kelp distribution in the northwest Atlantic Ocean under a changing climate. J Exp Mar Biol Ecol 400:90–98Google Scholar
  63. Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Williamson P, Hardman-Mountfort NJ, Southward AJ (2006) Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia 555:241–251Google Scholar
  64. Molenaar F (1996) Seasonal growth and reproduction of North Atlantic red seaweeds. PhD dissertation, University of Groningen, Netherlands, p 111Google Scholar
  65. Müller R, Wiencke C, Bischof K (2008) Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Clim Res 37:203–213Google Scholar
  66. Müller R, Bartsch I, Laepple T, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638Google Scholar
  67. Müller R, Bartsch I, Laepple T, Wiencke C (2011) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 237–270Google Scholar
  68. Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshwater Res 60:787–801Google Scholar
  69. Pakker H, Breeman AM, Prud’homme van Reine WF, van den Hoek C (1995) A comparative study of temperature responses of Carribean seaweeds from different biogeographic groups. J Phycol 31:499–507Google Scholar
  70. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371Google Scholar
  71. Peters AF, Breeman AM (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. J Phycol 28:428–438Google Scholar
  72. Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Natural 100:33–46Google Scholar
  73. Pivovarov S, Schlitzer R, Novikhin A (2003) River runoff influence on the water mass formation in the Kara Sea. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Elsevier, Amsterdam, pp 9–26Google Scholar
  74. Poloczanska ES, Smith S, Fauconnet L, Healy J, Tibbetts IR, Burrows MT, Richardson AJ (2011) Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming. J Exp Mar Biol Ecol 400:145–154Google Scholar
  75. Provan J, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol Ecol 14:793–803PubMedGoogle Scholar
  76. Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpernes function as allelopathic agents against reef corals. Proc Natl Acad Sci USA 43:17726–17731Google Scholar
  77. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407Google Scholar
  78. Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci doi:10.1093/icesjms/fsp056
  79. Sagarin RD, Barry JB, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490Google Scholar
  80. Sala E, Knowlton N (2006) Global marine biodiversity trends. Annu Rev Environ Resour 31:93–122Google Scholar
  81. Sangil C, Sanson M, Afonso-Carillo J (2011) Spatial variation patterns of subtidal assemblages along a subtropical oceanic archipelago: Thermal gradient vs herbivore pressure. Estuar Coast Shelf Sci 94:322–333Google Scholar
  82. Santelices B, Bolton JJ, Meneses I (2009) 6. Marine algal communities. In: Whitman JD, Roy K (eds) Marine macroecology. Chicago University Press, Chicago, pp 153–192Google Scholar
  83. Schiel DR, Steinbeck JR, Foster MS (2004) Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833–1839Google Scholar
  84. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710. doi:10.1029/2005GL024368 Google Scholar
  85. Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Fraser WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1529–1523Google Scholar
  86. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24Google Scholar
  87. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536PubMedGoogle Scholar
  88. Snoeijs PJM, Prentice IC (1989) Effects of cooling water discharge on the structure and dynamics of epilithic algal communities in the northern Baltic. Hydrobiologia 184:99–123Google Scholar
  89. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds 2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  90. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573–583Google Scholar
  91. Spurkland T, Iken K (2011) Salinity and irradiance effects on growth and maximum photosynthetic quantum yield in subarctic Saccharina latissima (Laminariales, Laminariaceae). Bot Mar 54:355–365Google Scholar
  92. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-southern oscillation and southern annual mode variability. J Geophys Res 113:C03S90Google Scholar
  93. Titlyanov EA, Yakovleva IM, Titlyanova TV (2007) Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol 342:282–291Google Scholar
  94. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, van den Berghe E, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101PubMedGoogle Scholar
  95. tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163Google Scholar
  96. tom Dieck I, de Oliveira EC (1993) The section Digitatae of the genus Laminaria (Phaeophyta) in the northern and southern Atlantic: crossing experiments and temperature responses. Mar Biol 115:151–160Google Scholar
  97. Tronholm A, Steen F, Tyberghein L, Leliaert F, Verbruggen H, Siguan MAR, De Clerk O (2010) Species delimitation, taxonomy, and biogeography of Dictyota in Europe (Dictyotales, Phaeophyceae). J Phycol 46:1301–1321Google Scholar
  98. Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J Climatol 27:277–293Google Scholar
  99. van den Hoek C (1982a) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:81–144Google Scholar
  100. van den Hoek C (1982b) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgoländer Meeresunters 35:53–214Google Scholar
  101. van den Hoek C, Breeman AM (1989) Seaweed biogeography in the North Atlantic: Where are we now? In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. Springer, Berlin, pp 55–86Google Scholar
  102. van der Strate HJ, Boele-Bos SA, Olsen JL, van den Zande L, Stam WT (2002) Phylogeographic studies in the tropical seaweed Cladophoropsis membranacea (Chlorophyta, Ulvophyceae) reveal a cryptic species complex. J Phycol 38:572–582Google Scholar
  103. van Oppen MJH, Olsen JL, Stam WT, van den Hoek C, Wiencke C (1993) Arctic-Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Mar Biol 115:381–386Google Scholar
  104. van Oppen MJH, Diekmann OE, Wiencke C, Stam WT, Olsen JL (1994) Tracking dispersal routes: Phylogeography of the Arctic-Antarctic disjunct seaweed Acrosiphonia arcta (Chlorophyta). J Phycol 30:67–80Google Scholar
  105. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274Google Scholar
  106. Verbruggen H, Tyberghein L, Pauly K, Vlaeminck C, van Nieuwenhuyze K, Kooistra WHCF, Leliaert F, De Clerk O (2009) Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Global Ecol Biogeogr 18:393–405Google Scholar
  107. Viejo RM, Martínez B, Arrontes J, Astudillo C, Hernández L (2011) Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at the southern range limit. Ecography 34:75–84Google Scholar
  108. Vroom PS, Timmers MAV (2009) Spatial and temporal comparison of algal biodiversity and benthic cover at Gardner Pinnacles, northwestern Hawai’ian islands. J Phycol 45:337–347Google Scholar
  109. Vroom PS, Page KN, Kenyon JC, Brainard RE (2006) Algae-dominated reefs. Am Scientist 94:430–437Google Scholar
  110. Vroom PS, Musburger CA, Cooper SW, Maragos JE, Page-Albins KN, Timmers MAV (2010) Marine biological community baselines in unimpacted tropical ecosystems: spatial and temporal analysis of reefs at Howland and Baker Islands. Biodivers Conserv 19:797–812Google Scholar
  111. Wanders JBW (1977) The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles). 3. The significance of grazing. Aquat Bot 3:357–390Google Scholar
  112. Weatherhead EC, Andersen SB (2006) The search for signs of recovery of the oregion layer. Nature 441:39–45PubMedGoogle Scholar
  113. Wernberg T, Thomsen MS, Tuya F, Kendrick GA, Staehr PA, Toohey BD (2010) Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol Lett 13:685–694PubMedGoogle Scholar
  114. Weslawski JM, Wiktor J, Kotwicki L (2010) Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodiv 40:123–130Google Scholar
  115. Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85Google Scholar
  116. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259Google Scholar
  117. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309Google Scholar
  118. Wiltshire KH, Malzahn M, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302Google Scholar
  119. Yarish C, Breeman AM, van den Hoek C (1984) Temperature, light and photoperiod responses of some Northeast American and west European endemic rhodophytes in relation to their geographic distribution. Helgoländer Meeresunters 38:273–304Google Scholar
  120. Zacher K, Wulff A, Molis M, Hanelt D, Wiencke C (2007) Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Global Change Biol 13:1201–1215Google Scholar
  121. Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2011) The abiotic environment of polar marine benthic algae. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 9–21Google Scholar
  122. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on green house warming and carbon-cycle dynamics. Nature 451:279–283PubMedGoogle Scholar
  123. Zardi GI, Nicastro KR, Canovas F, Costa JF, Serrão EA, Pearson GA (2011) Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal region. PLoS One 6(e19402):1–12Google Scholar
  124. Zuccarello GC, Buchanan J, West JA, Pedroche FF (2011) Genetic diversity of the mangrove-associated alga Bostrychia radicans/Bostrychia moritziana (Ceramiales, Rhodophyta) from southern Central America. Phycol Res 59:98–104Google Scholar
  125. Žuljević A, Antolić B, Nikolić V, Isajlović I (2011) Review of Laminaria rodriguezii records in the Adriatic Sea. 5th European Phycological Congress, Abstract Book, p 194Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Inka Bartsch
    • 1
  • Christian Wiencke
    • 1
  • Thomas Laepple
    • 2
  1. 1.Department Seaweed Biology, Section Functional EcologyAlfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Section Palaeoclimate Dynamics, Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations