Seaweed Biology pp 203-234

Part of the Ecological Studies book series (ECOLSTUD, volume 219)

Intimate Associations Between Epiphytes, Endophytes, and Parasites of Seaweeds

Chapter

Abstract

By impacting the structure of the seaweed host population, epiphytes, endophytes, and parasites may affect the species community with which the host interacts. These intimate associations have been hardly studied beyond a descriptive stage. The scarcity of epidemiological studies in natural populations of seaweeds is a major gap for the understanding of naturally occurring mechanisms impacting ecosystem functioning. However, major progresses have been done in recent years in characterizing some mechanisms of cross-talk involved in host specificity, the role of bacterial biofilms in mediating some interactions, as well as host defenses that impact the diversity of these associations through allelopathic interactions. Close associations are also providing both an economic burden and new opportunities in human affairs, as seaweed aquaculture develops worldwide and in the context of environment-friendly strategies to cope with fouling organisms, respectively.

References

  1. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91Google Scholar
  2. Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:324–334Google Scholar
  3. Anderson RJ, Carrick P, Levitt GJ, Share A (1997) Holdfasts of adult kelp Ecklonia maxima provides refuges from grazing for recruitment of juvenile kelps. Mar Ecol Prog Ser 159:265–273Google Scholar
  4. Andrews JH (1976) The pathology of marine algae. Biol Rev 51:211–253Google Scholar
  5. Andrews JH (1977) Observations on pathology of seaweeds in Pacific Northwest. Can J Bot 55:1019–1027Google Scholar
  6. Apt KE (1984) Effects of the symbiotic red alga Hypneocolax stellaris on its host Hypnea musciformis (Hypneaceae, Gigartinales). J Phycol 20:148–150Google Scholar
  7. Apt KE (1988a) Galls and tumor-like growth on marine macroalgae. Dis Aquat Org 3:211–217Google Scholar
  8. Apt KE (1988b) Etiology and development of hyperplasia induced by Streblonerna sp. (Phaeophyta) of members of the Laminariales (Phaeophyta). J Phycol 24:28–34Google Scholar
  9. Armstrong E, Yan LM, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40Google Scholar
  10. Arrontes J (1990) Composition, distribution on host and seasonality of epiphytes on three intertidal algae. Botanica Mar 33:205–211Google Scholar
  11. Ask EI, Azanza RV (2002) Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206:257–277Google Scholar
  12. Aumack CF, Amsler CD, McClintock JB, Baker BJ (2011) Changes in amphipod densities among macroalgal habitats in day versus night collections along the Western Antarctic Peninsula. Mar Biol 158:1879–1885Google Scholar
  13. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380PubMedGoogle Scholar
  14. Ballantine DL (1979) The distribution of algal epiphytes on macrophyte hosts offshore from La Parguera, Puerto Rico. Botanica Mar 22(107–1):11Google Scholar
  15. Benzing DH (1987) Vascular epiphytism: taxonomic participation and adaptive diversity. Ann Mo Bot Gard 74:183–204Google Scholar
  16. Bernstein BB, Jung N (1979) Selective pressures and coevolution in a kelp canopy community in Southern California. Ecol Monogr 49:335–355Google Scholar
  17. Bidwell RGS (1958) Photosynthesis and metabolism of marine algae 11. A survey of rates and products of photosynthesis in 14CO2. Can J Bot 36:337–349Google Scholar
  18. Bittick SJ, Bilotti ND, Peterson HA, Stewart HL (2010) Turbinaria ornata as an herbivory refuge for associate algae. Mar Biol 157:317–323Google Scholar
  19. Borlongan IAG, Tibubos KR, Yunque DAT, Hurtado AQ, Critchley AT (2011) Impact of AMPEP on the growth and occurrence of epiphytic Neosiphonia infestation on two varieties of commercially cultivated Kappaphycus alvarezii grown at different depths in the Philippines. J Appl Phycol 23:615–621Google Scholar
  20. Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650PubMedCentralPubMedGoogle Scholar
  21. Bouarab K, Kloareg B, Potin P, Correa JA (2001a) Ecological and biochemical aspects in algal infectious diseases. Cah Biol Mar 42:91–100Google Scholar
  22. Bouarab K, Potin P, Weinberger F, Correa J, Kloareg B (2001b) The Chondrus crispus-Acrochaete operculata host-pathogen association, a novel model in glycobiology and applied phycopathology. J Appl Phycol 13:185–193Google Scholar
  23. Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaün J-P, Potin P (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol 135:1838–1848PubMedCentralPubMedGoogle Scholar
  24. Bown P, Plumb J, Sánchez-Baracaldo P, Hayes PK, Brodie J (2003) Sequence heterogeneity of green (Chlorophyta) endophytic algae associated with a population of Chondrus crispus (Gigartinaceae, Rhodophyta). Eur J Phycol 38:153–164Google Scholar
  25. Box A, Sureda A, Terrados J, Pons A, Deudero S (2008) Antioxidant response and caulerpenyne production of the alien Caulerpa taxifolia (Vahl) epiphytized by the invasive algae Lophocladia lallemandii (Montagne). J Exp Mar Biol Ecol 364:24–28Google Scholar
  26. Burke JM (1986) Studies on the relationship between the obligate epiphyte Polysiphonia lanosa (Rhodophyta) and its host Ascophyllum nodosum (Phaeophyta). Honours thesis (Bachelor), St. Xavier University, Anntogonish, Nova ScotiaGoogle Scholar
  27. Burkhardt E, Peters AF (1998) Molecular evidence from nrDNA sequences that Laminariocolax (Phaeophyceae, Ectocarpales sensu lato) is a worldwide clade of closely related kelp endophytes. J Phycol 34:682–691Google Scholar
  28. Buschmann A, Gomez P (1993) Interaction mechanisms between Gracilaria chilensis (Rhodophyta) and epiphytes. Hydrobiologia 260:345–351Google Scholar
  29. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443Google Scholar
  30. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Comm 2. doi:10.1038/ncomms1251
  31. Cancino JM, Muñoz J, Muñoz M, Orellana MC (1987) Effects of the bryozoan Membranipora tuberculata (Bosc.) on the photosynthesis and growth of Gelidium rex. J Exp Mar Biol Ecol 113:105–112Google Scholar
  32. Cebrian J, Enriquez S, Fortes M, Agawin N, Vermaat JE, Duarte CM (1999) Epiphyte accrual on, Posidonia oceanica (L.) Delile leaves: implications for light absorption. Bot Mar 42:123–12Google Scholar
  33. Chiovitti A, Bacic A, Kraft GT, Craik DJ, Liao M-L (1999) Pyruvated carrageenans from Solieria robusta and its adelphoparasite Tikvahiella candida. Hydrobiologia 398–399:401–409Google Scholar
  34. Correa JA (1990) Pigmented algal endophytes of Chondrus crispus Stackhouse: host specificity, fine structure, and effects on host performance in infections by Acrochaete operculata Correa & Nielsen and A. heteroclada Correa & Nielsen. Ph.D. thesis, Dalhousie University, Halifax, Nova Scotia, CanadaGoogle Scholar
  35. Correa JA (1994) Infections by pigmented algal endophytes: misuse of concepts and terminology. Revista Chilena de Historia Natural 67:4–8Google Scholar
  36. Correa JA (1996) Infectious diseases of marine algae: current knowledge and approaches. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress Ltd, Bristol, U.K, pp 149–180Google Scholar
  37. Correa JA, McLachlan JL (1991) Endophytic algae of Chondrus crispus (Rhodophyta) III. Host specificity. J Phycol 27:448–459Google Scholar
  38. Correa J, Nielsen R, Grund DW, McLachlan J (1987) Endophytic algae of Irish Moss (Chondrus crispus Stackh.). Proc Int Seaweed Symp 12:223–228Google Scholar
  39. Correa JA, Nielsen R, Grund DW (1988) Endophytic algae of Chondrus crispus (Rhodophyta). II. Acrochaete heteroclada sp. nov., A. operculata sp. nov., and Phaeophila dendroides (Chlorophyta). J Phycol 24:528–539Google Scholar
  40. Correa J, Buschmann AH, Retamales C, Beltran J (1997) Infectious diseases of Mazzaella laminarioides (Rhodophyta): changes in infection prevalence and disease expression associated with season, locality, and within-site location. J Phycol 33:344–352Google Scholar
  41. Cosse A, Leblanc C, Potin P (2008) Dynamic defense of marine macroalgae against pathogens: from early activated to gene-regulated responses. Adv Bot Res 46:221–266Google Scholar
  42. Court GJ (1980) Photosynthesis and translocation studies of Laurencia spectabilis and its symbiont Janczewskia gardneri (Rhodophyceae). J Phycol 16:270–279Google Scholar
  43. Craigie JS, Correa JA, Gordon ME (1992) Cuticles from Chondrus crispus (Rhodophyta). J Phycol 28:777–786Google Scholar
  44. Critchley AT, Largo D, Wee W, Bleicher Lhonneur G, Hurtado AQ, Schubert J (2004) A preliminary summary on Kappaphycus farming and the impact of epiphytes. Jpn J Phycol 52:231–232Google Scholar
  45. D’Antonio C (1985) Epiphytes on the rocky intertidal algal, Rhodomela larix (Turner) C. Agardh: negative effects on the host and food for herbivores? J Exp Mar Biol Ecol 86:197–218Google Scholar
  46. Davis AR, Targett NM, McConnell OJ, Young CM (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. Bioorg Mar Chem 3:85–114Google Scholar
  47. Dawes CJ, Teasdale BW, Friedlander M (2000) Cell wall structure of the agarophytes Gracilaria tikvahiae and G. cornea (Rhodophyta) and penetration by the epiphyte Ulva lactuca (Chlorophyta). J Appl Phycol 12:567–575Google Scholar
  48. Del Campo E, García-Reina G, Correa JA (1998) Degradative disease in Ulva rigida (Chlorophyceae) associated with Acrochaete geniculata (Chlorophyceae). J Phycol 34:160–166Google Scholar
  49. den Hartog C (1972) Substratum: multicellular plants. In: Kinne O (ed) Marine ecology, vol I, Environmental factors, Part 3. Wiley, New York, pp 1277–1289Google Scholar
  50. Devinny JS, Volse LA (1978) Effects of sedimentation on the development of Macrocystis pyrifera gametophytes. Mar Biol 48:343–348Google Scholar
  51. Dickschat JS (2010) Quorum sensing and bacterial biofilms. Nat Prod Rep 27:343–369PubMedGoogle Scholar
  52. Diggle SP, Gardner A, West SA, Griffin AS (2007) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc B 362:1241–1249Google Scholar
  53. Ding HY, Ma JH (2005) Simultaneous infection by red rot and chytrid diseases in Porphyra yezoensis Ueda. J Appl Phycol 17:51–56Google Scholar
  54. Dixon PS (1963) The Rhodophyta: some aspects of their biology. Ocean Mar Biol Annu Rev 1:177–196Google Scholar
  55. Dobretsov S, Teplitski M, Paul VJ (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25(5):413–427PubMedGoogle Scholar
  56. Dobretsov SV, Qian P-Y (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18:217–228Google Scholar
  57. Ducker SC, Knox RB (1984) Epiphytism at the cellular level, with special reference to algal epiphytes. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions, vol 17, Encyclopedia of plant physiology, new series. Springer, Berlin, pp 115–133Google Scholar
  58. Duggins DO, Eckman JE, Sewell AT (1990) Ecology of understory kelp environments II. Effects of kelps on recruitment of benthic invertebrates. J Exp Mar Biol Ecol 143:27–45Google Scholar
  59. Dworjanyn SA, de Nys R, Steinberg PD (2006) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163Google Scholar
  60. Eckman JE, Duggins DO, Sewell AT (1989) Ecology of understorey kelp environments I. Effects of kelps on flow and particle transport near the bottom. J Exp Mar Biol Ecol 129:173–187Google Scholar
  61. Eggert A, Peters AF, Küpper FC (2010) The potential impact of climate change on endophyte infections in kelp sporophytes. In: Seckbach J (ed) Seaweeds and their role in globally changing environments. Springer, Berlin, pp 141–154Google Scholar
  62. Ellertsdóttir E, Peters AF (1997) High prevalence of infection by endophytic brown algae in populations of Laminaria spp. (Phaeophyceae). Mar Ecol Prog Ser 146:135–143Google Scholar
  63. Enge S, Nylund GM, Harder T et al (2009) A novel chemical releases the invasive red alga Bonnemaisonia hamifera from new enemies. Phycologia 48(4):s. 81Google Scholar
  64. Filion-Myklebust C, Norton T (1981) Epidermis shedding in the brown seaweed Ascophyllum nodosum (L.) Le Jolis and its ecological significance. Mar Biol Lett 2:45–51Google Scholar
  65. Fletcher RL (1995) Epiphytism and fouling in Gracilaria cultivation: an overview. J Appl Phycol 7:325–333Google Scholar
  66. Fralick RA, Mathieson AC (1975) Physiological ecology of four Polysiphonia species (Rhodophyta, Ceramiales). Mar Biol 29:29–36Google Scholar
  67. Friedlander M (1992) Gracilaria conferta and its epiphytes: the effect of culture conditions on growth. Bot Mar 35:423–428Google Scholar
  68. Friedlander M, Ben-Amotz A (1991) The effect of outdoor culture conditions on growth and epiphytes of Gracilaria conferta. Aquat Bot 39:315–333Google Scholar
  69. Fujita Y (1990) Diseases of cultivated Porphyra in Japan. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic, The Hague, pp 177–190Google Scholar
  70. Funano T (1969) Observation on the female gametophytes and the microscopic sporophytes of Laminaria religiosa Miyabe. Rep Hokkaido Fish Exp Stn 10:43–50Google Scholar
  71. Gachon CM, Strittmatter M, Müller DG, Kleinteich J, Küpper FC (2009) Detection of differential host susceptibility to the marine oomycete pathogen Eurychasma dicksonii by real-time PCR: not all algae are equal. Appl Environ Microbiol 75:322–328PubMedCentralPubMedGoogle Scholar
  72. Gachon CM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640PubMedGoogle Scholar
  73. Garbary D, Burke J, Tian L (1991) The Ascophyllum⁄Polysiphonia⁄ Mycosphaerella symbiosis II. Aspects of the ecology and distribution of Polysiphonia lanosa in Nova Scotia. Bot Mar 34:391–401Google Scholar
  74. Garbary D, Hansen GI, Scagel RF (1982) The marine algae of British Columbia and northern Washington: division Rhodophyta (red algae), Class Florideophyceae, Orders Acrochaetiales and Nemaliales. Syesis 15(1(Suppl)):1–102Google Scholar
  75. Garbary DJ, Kim KY, Klinger T, Duggins D (1999a) Preliminary observations on the development of kelp gametophytes endophytic in red algae. Hydrobiologia 398(399):247–252Google Scholar
  76. Garbary DJ, Kim KY, Duggins D (1999b) Red algae as hosts for endophytic kelp gametophytes. Mar Biol 135:35–40Google Scholar
  77. Gauna M, Parodi C, Elisa R (2010) Green epi-endophytes in Hymenena falklandica (Rhodophyta) from the Patagonian coasts of Argentina: preliminary observations. Phycol Res 56:1440–1835Google Scholar
  78. Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria Mar. Ecol Progr Ser 409:267–300Google Scholar
  79. Goff LJ (1976) Solitary bodies (S-bodies) in the parasitic red algaHarveyella mirabilis (Choreocolaceae, Cryptonemiales). Protoplasma 89:189–195Google Scholar
  80. Goff LJ (1982) The biology of parasitic red algae. Phycol Res 1:289–370Google Scholar
  81. Goff LJ, Ashen J, Moon D (1997) The evolution of parasites from their hosts: a case study in the parasitic red algae. Evolution 51:1068–1078Google Scholar
  82. Gonzalez MA, Goff LJ (1989) The red algal epiphytes Microcladia coulteri and M. californica (Rhodophyceae, Ceramiaceae) II. Basiphyte specificity. J Phycol 25:558–567Google Scholar
  83. Gonzalez MA, Barrales HL, Candia A, Cid L (2003) Spatial and temporal distribution of dominant epiphytes on Gracilaria from a natural subtidal bed in central-southern Chile. Aquaculture 116:135–148Google Scholar
  84. Grahame J, Hanna FS (1989) Factors affecting the distribution of the epiphytic fauna of Corallina officinalis (L.) on an exposed rocky shore. Ophelia 30:113–129Google Scholar
  85. Grenville-Briggs L, Gachon CM, Strittmatter M, Sterck L, Küpper FC, van West P (2011) A molecular insight into algal-oomycete warfare: cDNA analysis of Ectocarpus siliculosus infected with the basal oomycete Eurychasma dicksonii. PLoS One 6(9):e24500PubMedCentralPubMedGoogle Scholar
  86. Gross EM (2003) Allelopathy of Aquatic Autotrophs. Crit Rev Plant Sci 22:313–339Google Scholar
  87. Hancock L, Goff LJ, Lane C (2010) Red algae lose key mitochondrial genes in response to becoming parasitic. Genome Biol Evol 2:897–910PubMedCentralPubMedGoogle Scholar
  88. Harder T, Dobretsov S, Qian PY (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:131–141Google Scholar
  89. Harlin MM, Craigie JS (1975) The distribution of photosynthate in Ascophyllum nodosum as it relates to epiphytic Polysiphonia lanosa. J Phycol 11:109–113Google Scholar
  90. Harlin MM (1987) Allelochemistry in marine macroalgae. Crit Rev Plant Sci 5:237–249Google Scholar
  91. Hay ME (1986) Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Am Nat 128:617–648Google Scholar
  92. Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134Google Scholar
  93. Hay ME, Steinberg PD (1992) The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In: Rosenthal GA, Berenbaum M (eds) Herbivores: their interaction with secondary plant metabolites, vol 2, Ecological and evolutionary processes. Academic, San Diego, pp 371–413Google Scholar
  94. Hay ME, Piel J, Boland W, Schnitzler I (1998) Seaweed sex pheromones and their degradation products frequently suppress amphipod feeding but rarely suppress sea urchin feeding. Chemoecology 8:91–98Google Scholar
  95. Hayward PJ (1980) Invertebrate epiphytes of coastal marine algae. In: Price JH, Irvine DEG, Farnham WF (eds) The shore environment, vol 2, Ecosystems. Academic, New York, pp 761–787Google Scholar
  96. Hellio C, Marechal J-P, Veron B, Bremer G, Clare AS, Le Gal Y (2004) Seasonal variation of antifouling activities of marine algae from the Brittany Coast (France). Mar Biotechnol 6:67–82PubMedGoogle Scholar
  97. Hemmi A, Makinen A, Jormalainen V, Honkanen T (2005) Responses of growth and phlorotannins in Fucus vesiculosus to nutrient enrichment and herbivory. Aquat Ecol 39:201–211Google Scholar
  98. Hengst MB, Andrade S, González B, Correa JA (2010) Changes in epiphytic bacterial communities of intertidal seaweeds modulated by host, temporality, and copper enrichment. Microb Ecol 60:282–90PubMedGoogle Scholar
  99. Honkanen T, Jormalainen V (2005) Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia 144:196–205PubMedGoogle Scholar
  100. Hubbard CB, Garbary DJ, Kim KY, Chiasson DM (2003) Host specificity and growth of kelp gametophytes symbiotic with filamentous red algae (Ceramiales, Rhodophyta). Helgol Mar Res 58:18–25Google Scholar
  101. Hurtado AQ, Critchley AT, Trespoey A, Bleicher Lhonneur G (2006) Occurence of Polysiphonia epiphytes in Kappaphycus farms at Calaguas Is., Camarines Norte Philippines. J Appl Phycol 18:301–306Google Scholar
  102. Jennings JG, Steinberg PD (1997) Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109:461–473Google Scholar
  103. Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207PubMedGoogle Scholar
  104. Joint I, Tait K, Wheeler G (2007) Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc Lond B Biol Sci 36:1223–33Google Scholar
  105. Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 75–90Google Scholar
  106. Kain JM (1979) A view of the genus Laminaria. Oceanogr Mar Biol Annu Rev 17:101–161Google Scholar
  107. Kanagasabhapathy M, Yamazaki G, Ishida A, Sasaki H, Nagata S (2009) Presence of quorum-sensing inhibitor-like compounds from bacteria isolated from the brown alga Colpomenia sinuosa. Lett Appl Microbiol 49:573–579PubMedGoogle Scholar
  108. Kaneko T (1973) Morphology of the female gametophyte and young sporophyte of Laminaria japonica var. ochotensis Okamura in nature. Sci Rep Hokkaido Fish Exp Stn 15:1–8Google Scholar
  109. Karez R, Engelbrecht S, Sommer U (2000) “Co-consumption” and “protective coating”: two new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte-host interactions. Mar Ecol Prog Ser 205:85–93Google Scholar
  110. Kim MJ, Choi JC, Kang SE, Cho JY, Jin HJ, Chun BS, Hong YK (2004) Multiple allelopathic activity of the crustose coralline alga Lithophyllum yessoense against settlement and germination of seaweed spores. J Appl Phycol 16:175–179Google Scholar
  111. Kremer BP (1983) Carbon economy and nutrition of the alloparasitic red alga Harveyella mirabilis. Mar Biol 76:231–239Google Scholar
  112. Kugrens P, West JA (1973) The ultrastructure of the alloparasitic red alga Choreocolax polysiphoniae. Phycologia 12:175–186Google Scholar
  113. Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwigia 69:381–389Google Scholar
  114. Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291PubMedCentralPubMedGoogle Scholar
  115. Küpper FC, Müller DG, Peters AF, Kloareg B, Potin P (2002) Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of Laminariales. J Chem Ecol 28:2057–2081PubMedGoogle Scholar
  116. Küpper FC, Maier I, Müller DG, Loiseaux-de Goer S, Guillou L (2006) Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, Eurychasma dicksonii (Wright) Magnus and Chytridium polysiphoniae Cohn Cryptogam. Algol 27:165–184Google Scholar
  117. Kurihara A, Abe T, Tani M, Sherwood AR (2010) Molecular phylogeny and evolution of red algal parasites: a case study of Benzaitenia, Janczewskia, and Ululania (Ceramiales). J Phycol 46:580–590Google Scholar
  118. Kuschel FA, Buschmann AH (1991) Abundance, effects and management of epiphytism in intertidal cultures of Gracilaria (Rhodophyta) in Southern Chile. Aquaculture 92:7–19Google Scholar
  119. Lachnit T, Meske D, Wahl M, Harder T, Schmitz R (2011) Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol 13:655–65PubMedGoogle Scholar
  120. Lam C, Harder T (2007) Marine macroalgae affect abundance and community richness of bacterioplancton in close vicinity. J Phycol 43:874–881Google Scholar
  121. Lam C, Stang A, Harder T (2007) Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2007.00426.x
  122. Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275PubMedGoogle Scholar
  123. Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 229–243Google Scholar
  124. Lane AL, Nyadong L, Galhena A, Shearer TL, Stout EP, Parry RM, Kwasnik M, Wang MD, Hay ME, Fernandez F, Kubanek J (2009) Surface-mediated antifungal chemical defenses in a tropical seaweed. Proc Natl Acad Sci USA 106:7314–7319PubMedCentralPubMedGoogle Scholar
  125. Lane CE, Saunders GW (2005) Molecular investigation reveals epiphytic extrageneric kelp (Laminairales, Phaeophyceae) gametophytes on Lessoniopsis littoralis. Bot Mar 48:426–436Google Scholar
  126. Lein TE, Sjatun K, Wakili S (1991) Mass-occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia 76:187–193Google Scholar
  127. Leonardi PI, Miravalles AB, Faugeron S, Flores V, Beltran J, Correa JA (2006) Diversity, phenomenology and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in northern Chile. Eur J Phycol 41:247–257Google Scholar
  128. Levin P, Mathieson A (1991) Variation in a host–epiphyte relationship along a wave exposure gradient. Mar Ecol Prog Ser 77:271–278Google Scholar
  129. Li W, Zhang T, Tang X, Wang B (2010) Oomycetes and fungi: important parasites on marine algae Acta Oceanol. Sinica 29:74–81Google Scholar
  130. Linskens HF (1963) Beitrag zur Frage der Beziehungen zwischen Epiphyt und Basiphyt bei marinen Algen. Pubbl Staz Zool Napoli 33:274–293Google Scholar
  131. Linskens HF (1976) Specific interactions in higher plants. In: Wood RKS, Graniti A (eds) Specificity in plant diseases. Plenum, New YorkGoogle Scholar
  132. Lion U, Wiesemeier T, Weinberger F, Beltrán J, Flores V, Faugeron S, Correa J, Pohnert G (2006) Phospholipases and galactolipases trigger oxylipin-mediated wound-activated defence in the red alga Gracilaria chilensis against epiphytes. Chembiochem 7:457–462PubMedGoogle Scholar
  133. Lobban CS, Baxter DM (1983) Distribution of the red algal epiphyte Polysiphonia lanosa on its brown algal host Ascophyllum nodosum in the Bay of Fundy. Can Bot Mar 26:533–538Google Scholar
  134. Longtin C, Scrosati R (2009) Role of surface wounds and brown algal epiphytes in the colonization of Ascophyllum nodosum (Phaeophyceae) fronds by Vertebrata lanosa (Rhodophyta). J Phycol 45:535–9Google Scholar
  135. Longtin C, Scrosati R, Whalen G, Garbary D (2009) Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies, and host fronds. J Phycol 45:820–7Google Scholar
  136. Lotze HK, Worm B, Sommer U (2000) Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos 89:46–58Google Scholar
  137. Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions I. Populations and communities. Annu Rev Ecol Syst 12:405–437Google Scholar
  138. Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119Google Scholar
  139. Luyen QH, Cho J-Y, Choi J-S, Kang J-Y, Park NG, Hong KI (2008) Isolation of algal spore lytic C17 fatty acid from the crustose coralline seaweed Lithophyllum yessoense. J Appl Phycol 21:423–427Google Scholar
  140. Mahalingam R, Fedoroff NV (2003) Stress response, cell death and signaling: the many faces of ROS. Physiol Plant 119:56–68Google Scholar
  141. Manefield M, Rasmussen T, Kumar N, Hentzer M, Anderson JB, Steinberg PD, Kjelleberg S, Givskov M (2002) Quorum sensing inhibition through accelerated degradation of the LuxR protein by halogenated furanones. Microbiology 148:1119–1127PubMedGoogle Scholar
  142. Markham JW (1969) Vertical distribution of epiphytes on the stipe of Nereocystis luetkeana (Mertens) Postels and Ruprecht. Svesis 2:227–240Google Scholar
  143. Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307:1598PubMedGoogle Scholar
  144. Maximilien R, de Nys R, Holmstrom C, Gram L, Kjelleberg S, Steinberg PD (1998) Bacterial fouling is regulated by secondary metabolites from the red alga Delisea pulchra. Aquat Microbial Ecol 15:233–246Google Scholar
  145. McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alteration and localised accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii associated with actin polarization, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534Google Scholar
  146. Menge BA (1991) Relative importance of recruitment and other causes of variation in rocky intertidal community structure. J Exp Mar Biol Ecol 146:69–100Google Scholar
  147. Moss BL (1982) The control of epiphytes by Halidrys siliquosa. Phycologia 21:185–191Google Scholar
  148. Müller DG, Kapp M, Knippers R (1998) Viruses in marine brown algae. Adv Virus Res 50:50–67Google Scholar
  149. Müller DG, Küpper FC, Küpper H (1999) Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycological Res 47:217–23Google Scholar
  150. Nelson TA, Lee DJ, Smith BC (2003) Are “green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phycol 39:874–879Google Scholar
  151. Nielsen R, McLachlan J (1986) Investigations of the marine algae of Nova Scotia XVI. The occurrence of small green algae. Can J Bot 64:808–814Google Scholar
  152. Nonomura AM (1979) Development of Janczewskia morimotoi (Ceramiales, Rhodophyceae). J Phycol 15:154–162Google Scholar
  153. Nylund GM, Pavia H (2003) Inhibitory effects of red algal extracts on larval settlement of the barnacle Balanus improvisus. Mar Biol 143:875–882Google Scholar
  154. Nylund GM, Cervin G, Persson F, Hermansson M, Steinberg PD, Pavia H (2008) Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonisation. Mar Ecol Progr Ser 369:39–50Google Scholar
  155. Oliveira EC, Alveal K, Anderson R (2000) Mariculture of the agar-producing Gracilarioid red algae. Rev Fish Sci 8:345–378Google Scholar
  156. Padilla DK (1985) Structural resistance of algae to herbivores: a biomechanical approach. Mar Biol 90:103–109Google Scholar
  157. Park CS et al (2000) Comparison of the morphological and physiological features of the red rot disease fungus Pythium sp. isolated from Porphyra yezoensis from Korea and Japan. Fisheries Sci 66:261–269Google Scholar
  158. Parke MW (1932) Port Erin: report of the algologist. Rep Mar Biol Stn Port Erin 45:18–21Google Scholar
  159. Paul V, Ritson-Williams R (2008) Quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427Google Scholar
  160. Pavia H, Carr H, Åberg P (1999) Habitat and feeding preferences of crustacean mesoherbivores inhabiting the brown seaweed Ascophyllum nodosum (L.) Le Jol. and its epiphytic macroalgae. J Exp Mar Biol Ecol 236:15–32Google Scholar
  161. Pearson CA, Evans LV (1989) Polysiphonia lanosa basiphyte inter-relationships. Br Phycol J 24:310–311Google Scholar
  162. Pearson CA, Evans LV (1990) Settlement and survival of Polysiphonia lanosa (Ceramiales) spores on Ascophyllum nodosum and Fucus vesiculosus (Fucales). J Phycol 26:597–603Google Scholar
  163. Peters AF (1991) Field and culture studies of Streblonema macrocystis sp. nov. (Ectocarpales, Phaeophyceae) from Chile, a sexual endophyte of giant kelp. Phycologla 30:365–377Google Scholar
  164. Peters AF (2003) Molecular identification, taxonomy and distribution of brown algal endophytes with emphasis on species from Antarctica. In: Chapman ARO, Anderson RJ, Vreeland V, Davison IR (eds) In: Proceedings of the 17th international seaweed symposium. pp 293–302. Oxford University Press, New YorkGoogle Scholar
  165. Peters AF, Schaffelke B (1996) Streblonema (Ectocarpales. Phaeophyceae) infection in the kelp Laminaria saccharina (Laminariales, Phaeophyceae) in the western Baltic. Hydrobiologia 326(327):111–116Google Scholar
  166. Pizarro AB, Santelices (1993) Environmental variation and large-scale Gracilaria production. In: Chapman ARO, Brown y MT, Lahaye M (eds) Fourteenth International Seaweed Symposium—Kluwer Academic Publishers, Belgium. Hydrobiología 260/261:357–363Google Scholar
  167. Pohnert G (2004) Chemical defense strategies of marine organisms. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Topics in current chemistry, vol 239. Springer, Berlin, pp 179–219Google Scholar
  168. Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 245–271, 121–146Google Scholar
  169. Potin P, Bouarab K, Salaün J-P, Pohnert G, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5:308–317PubMedGoogle Scholar
  170. Pringle JD, James D, Tseng CK (1989) Overview of the workshop on production and utilization of commercial seaweeds—Quingdao, China, 1987. J Appl Phycol 1:83–90Google Scholar
  171. Råberg S, Berger-Jönsson R, Björn A, Graneli E, Kautsky L (2005) Effects of Pilayella littoralis on Fucus vesiculosus recruitment: implications for community composition. Mar Ecol Prog Ser 289:131–139Google Scholar
  172. Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244PubMedGoogle Scholar
  173. Rattray J (1885) Note on Ectocarpus. Trans R Soc Ed 32:589–602Google Scholar
  174. Rausher MD (1996) Genetic analysis of coevolution between plants and their natural enemies. Trends Genet 12:212–217PubMedGoogle Scholar
  175. Rawlence DJ (1972) An ultrastructural study of the relationship between rhizoids of Polysiphonia lanosa (L.) Tandy (Rhodophyceae) and tissue of Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae). Phycologia 11:279–290Google Scholar
  176. Rawlence DJ, Taylor ARA (1972) A light and electron microscopic study of rhizoid development in Polysiphonia lanosa (L.) Tandy. J Phycol 8:15–24Google Scholar
  177. Reed DC, Laur DR, Ebeling AW (1988) Variation in algal dispersal and recruitment: the importance of episodic events. Ecol Monogr 58:321–335Google Scholar
  178. Rindi F, Guiry MD (2004) Composition and spatio temporal variability of the epiphytic macroalgal assemblage of Fucus vesiculosus Linnaeus at Clare Island, Mayo, western Ireland. J Exp Mar Biol Ecol 311:233–252Google Scholar
  179. Rönnberg C, Bonsdorff E (2004) Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia 514:227–241Google Scholar
  180. Russell BD, Elsdon TS, Gillanders BM, Connell SD (2005) Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment. Mar Biol 147:551–558Google Scholar
  181. Russell G, Veltcamp CJ (1984) Epiphyte sunrival on skinshedding macrophytes. Mar Ecol Prog Ser 18:149–153Google Scholar
  182. Sakai Y, Funano T (1964) Observation on the female gametophytes and the microscopic sporophytes of Laminaria religiosa from Oshoro Bay, Hokkaido, Japan. Sci Rep Hokkaido Fish Exp Stn 2:16Google Scholar
  183. Sanchez P, Correa JA, Garcia-Reina G (1996) Host-specificity of Endophyton ramosum (Chlorophyta), the causative agent of green patch disease in Mazzaella laminarioides (Rhodophyta). Eur J Phycol 31:173–179Google Scholar
  184. Santelices B, Ugarte R (1990) Ecological differences among Chilean populations of commercial Gracilaria. J Appl Phycol 2:17–26Google Scholar
  185. Santelices B, Varela D (1993) Intra-clonal variation in the red seaweed Gracilaria chilensis. Mar Biol 116:543–552Google Scholar
  186. Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123Google Scholar
  187. Sekimoto S, Beakes GW, Gachon CMM, Müller DG, Küpper FC et al (2008) The development, ultrastructural cytology and molecular phylogeny of the basal oomycete Eurychasma dicksonii infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis. Protist 159:299–318PubMedGoogle Scholar
  188. Sieburth JM, Conover JT (1965) Sargassum tannin, an antibiotic which retards fouling. Nature 208:52–53Google Scholar
  189. Steinberg PD, deNys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629Google Scholar
  190. Steinberg PD, de Nys R, Kjelleberg S (2001) Chemical mediation of surface colonization. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, pp 355–387Google Scholar
  191. Steneck RS (1982) Adaptive trends in the ecology and evolution of crustose coralline algae (Rhodophyta, Corallinaceae) PhD dissertation, John Hopkins University, Baltimore, MarylandGoogle Scholar
  192. Strittmatter M, Gachon CMM, Küpper FC (2009) Ecology of lower oomycetes. In: S. Kamoun and K. Lamour (eds) “Oomycete genetics and genomics: diversity, plant and animal interactions, and toolbox”Google Scholar
  193. Sussmann A, DeWreede RE (2002) Host specificity of the endophytic sporophyte phase of Acrosiphonia (Codiolales, Chlorophyta) in southern British Columbia. Phycologia 41:169–177Google Scholar
  194. Sussmann A, Mable BK, DeWreede RE, Berbee M (1999) Identification of green algal endophytes as the alternate phase of Acrosiphonia (Codiolales, Chlorophyta) using ITS1 and ITS2 ribosomal DNA sequence data. J Phycol 35:607–614Google Scholar
  195. Suzuki Y, Takabayashi T, Kawaguchi T, Matsunaga K (1998) Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). J Exp Mar Biol Ecol 225:69–77Google Scholar
  196. Svensson JR, Nylund GM, Cervin G et al (2009) Japanese macroalgae use chemical warfare to invade Sweden. Phycologia 48(4):s 363Google Scholar
  197. Svirski E, Beer S, Friedlander M (1993) Gracilaria conferta and its epiphytes: (2) interrelationship between the red seaweed and Ulva lactuca. Hydrobiologia 260–261:391–396Google Scholar
  198. Taylor WM (1957) Marine algae of the northeastern coast of North America, Volume 13, Partie 1. University of Michigan Press, New York, p 509Google Scholar
  199. Thomas D, Beltrán J, Flores V, Contreras L, Bollmann E, Correa JA (2009) Laminariocolax sp. (Phaeophyceae) associated with gall developments in Lessonia nigrescens (Phaeophyceae). J Phycol 45:1252–1258Google Scholar
  200. Turner CHC, Evans LV (1977) Physiological studies on the relationship between Ascophyllumn nodosum and Polysiphonia lanosa. New Phytol 79:363–371Google Scholar
  201. Underwood AJ (2000) Experimental ecology of rocky intertidal habitats: what are we learning? J Exp Mar Biol Ecol 250:51–76PubMedGoogle Scholar
  202. Uppalapati SR, Kerwin JL, Fujita Y (2001) Epifluorescence and scanning electron microscopy of host-pathogen interactions between Pythium porphyrae (Peronosporales, Oomycota) and Porphyra yezoensis (Bangiales, Rhodophyta). Bot Mar 44:139–145Google Scholar
  203. Vairappan CS (2006) Seasonal occurrences of epiphytic algae on the commercially cultivated red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 18:611–617Google Scholar
  204. Vairappan CS, Chung CS, Hurtado AQ, Soya FE, Bleicher-Lhonneur G, Critchley A (2008) Distribution and symptoms of epiphyte infection in major carrageenophyte-producing farms. J Appl Phycol 20:477–483Google Scholar
  205. Viejo RM, Åberg P (2003) Temporal and spatial variation in the density of mobile epifauna and grazing damage on the seaweed Ascophyllum nodosum. Mar Biol 142:1229–1241Google Scholar
  206. Wahl M, Hay ME (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102:329–340Google Scholar
  207. Wahl M, Mark O (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66Google Scholar
  208. Wahl M, Hay ME, Enderlein P (1997) Effects of epibiosis on consumer-prey interactions. Hydrobiologia 355:49–59Google Scholar
  209. Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302PubMedGoogle Scholar
  210. Weinberger F, Beltran J, Correa JA, Lion U, Pohnert G, Kumar N, Steinberg P, Kloareg B, Potin P (2007) Spore release in Acrochaetium sp. is bacterially controlled. J Phycol 43:235–241Google Scholar
  211. Weinberger F, Friedlander M (2000) Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. J Phycol 36:1079–1086Google Scholar
  212. Weinberger F, Potin P (2010) Red algal defenses in the genomics age. In: red algae in the genomic age. Cellular origin, life in extreme habitats and astrobiology, 13(5), Springer, Dordrecht pp 457–477Google Scholar
  213. Weinberger F, Friedlander M, Hoppe HG (1999) Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol 35:747–755Google Scholar
  214. Weinberger F, Richard C, Kloareg B, Kashman Y, Hoppe H-G, Friedlander M (2001) Structure activity relationship of oligoagar elicitors toward Gracilaria conferta (Rhodophyta). J Phycol 37:418–426Google Scholar
  215. Weinberger F, Lion U, Delage L, Kloareg B, Potin P, Beltrán J, Flores V, Faugeron S, Correa J, Pohnert G (2011) Up-regulation of lipoxygenase, phospholipase, and oxylipin-production in the induced chemical defense of the red alga Gracilaria chilensis against epiphytes. J Chem Ecol 37:677–686PubMedGoogle Scholar
  216. West JA, Klochkova TA, Kim GH, Loiseaux-de Goer S (2006) Olpidiopsis sp., an oomycete from Madagascar that infects Bostrychia and other red algae: host species susceptibility. Phycol Res 54:72–85Google Scholar
  217. Wheeler GL, Tait K, Taylor A, Brownlee C, Joint I (2006) Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:608–618PubMedGoogle Scholar
  218. Wheeler W, NeushulM, Harger B (1981) Development of a coastal marine farm and its associated problems. In: Levring T (ed) Proceedings of the Tenth International Seaweed Symposium. Walter de Gruyter, Berlin, pp 631–636Google Scholar
  219. White EB, Boney AD (1969) Experiments with some endophytic and endozoic Acrochaetium species. J Exp Mar Biol Ecol 3:246–274Google Scholar
  220. White EB, Boney AD (1970) In situ and in vitro studies on some endophytic and endozoic Acrochaetium species. Nova Hedwigia 19:841–881Google Scholar
  221. Whittick A (1983) Spatial and temporal distributions of some dominant epiphytes on the stipes of Laminaria hyperborea (Gunn.) Fosl. (Phaeophyta, Laminariales) in SE Scotland. J Exp Mar Biol Ecol 73:1–10Google Scholar
  222. Wieczorek S, Todd CD (1998) Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–118Google Scholar
  223. Woelkerling WJ (1971) Morphology and taxonomy of the Audouinella complex (Rhodophyta) in southern Australia. Austr J Bot (Suppl. 1):1–91Google Scholar
  224. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692PubMedCentralPubMedGoogle Scholar
  225. Wright EP (1879) On a species of Rhizophydium parasitic on species of Ectocarpus, with notes on the fructification of the Ectocarpi. Trans Royal Irish Acad 26:369–379Google Scholar
  226. Yoshida T, Akiyama K (1979) Streblonema (Phaeophyta) infection in the frond of cultivated Undaria (Phaeophyceae). Proc Int Seaweed Symp 9:219–223Google Scholar
  227. Zheng TL, Su JQ, Maskaoui K, Yu ZM, Hu Z, Xu JS, Hong HS (2005) Microbial modulation in the biomass and toxin production of a red-tide causing alga. Mar Pollut Bull 51:1018–25PubMedGoogle Scholar
  228. Zuccarello GC, Debra M, Goff LJ (2004) A phylogenetic study of parasitic genera placed in the family Choreocolacaceae (Rhodophya). J Phycol 40:937–945Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CNRSUniversité Pierre et Marie Curie-Paris 6RoscoffFrance

Personalised recommendations