Explosive Properties of Primary Explosives

  • Robert Matyáš
  • Jiří Pachman
Chapter

Abstract

The main requirements for primary explosives are sensitivity within useful limits, high initiating efficiency, reasonable fluidity, resistance to dead-pressing, and long-term stability. Useful limits mean that the substance must be sensitive enough to be initiated by an SII but not too sensitive as to be unsafe for handling or transportation. The initiating efficiency, perhaps the most important parameter, determines the ability of a primary explosive to initiate secondary explosives. The reasonable free flowing properties are important for manufacturing where the primary explosives are often loaded volumetrically. Primary explosives must not undergo desensitization when pressed thereby yielding a dead-pressed product. The long-term stability and compatibility with other components, even at elevated temperatures, are essential because primary explosives are often embedded inside more complex ammunition and are not expected to be replaced during their service life. They must also be insensitive to moisture and atmospheric carbon dioxide. Parameters important for secondary explosives such as brisance, strength, detonation velocity, or pressure are of lesser importance to primary explosives although they are of course related to the above properties.

Keywords

Detonation Velocity Energetic Material Impact Sensitivity Emulsion Explosive Initiation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Urbański, T.: Chemie a technologie výbušin. SNTL, Praha (1959)Google Scholar
  2. 2.
    Krauz, C.: Technologie výbušin. Vědecko-technické nakladatelství, Praha (1950)Google Scholar
  3. 3.
    Patry, M.: Combustion et detonation, Paris 1933 In: Urbański, T. Chemistry and Technology of Explosives, vol. 3. PWN - Polish Scientific Publisher, Warszawa (1967)Google Scholar
  4. 4.
    Tomlinson, W.R., Sheffield, O.E.: Engineering Design handbook, Explosive Series, Properties of Explosives of Military Interest, Report AMCP 706-177. U.S. Army Material Command, Washington, DC (1971)Google Scholar
  5. 5.
    Muraour, H.: Sur la théorie des réactions explosives. Cas particulier des explosifs d`amourçage. Bull. Soc. Chim. Fr. 51, 1152–1166 (1932)Google Scholar
  6. 6.
    Kast, H., Haid, A.: Über die sprengtechnischen Eigenschaften der wichtigsten Initialsprengstoffe. Zeitschrift für das angewandte Chemie 38, 43–52 (1925)CrossRefGoogle Scholar
  7. 7.
    Jahresbericht VIII der chemisch-technischen Reichsanstalt. 8, 122 In: Urbański, T. Chemistry and Technology of Explosives, vol. 3. PWN - Polish Scientific Publisher, Warszawa (1967)Google Scholar
  8. 8.
    Cook, M.A.: An equation of state for gases at extremely high pressures and temperatures from the hydrodynamic theory of detonation. J. Chem. Phys. 15, 518–524 (1947)CrossRefGoogle Scholar
  9. 9.
    Strnad, J.: Iniciační vlastnosti nejpoužívanějších třaskavin a vývoj nových metodik jejich měření. Dissertation thesis, Vysoká škola chemicko-technologická, Pardubice (1972)Google Scholar
  10. 10.
    Kling, A., Florentin, D.: Action des basses températures sur les explosifs. Memorial des poudres 17, 145–153 (1913)Google Scholar
  11. 11.
    Carl, L.R.: The rate of detonation of mercury fulminate and its mixtures with potassium chlorate. Army Ordnance 6, 302–304 (1926)Google Scholar
  12. 12.
    Danilov, J.N., Ilyushin, M.A., Tselinskii, I.V.: Promyshlennye vzryvchatye veshchestva; chast I. Iniciiruyushchie vzryvshchatye veshchestva. Sankt-Peterburgskii gosudarstvennyi tekhnologicheskii institut, Sankt-Peterburg (2001)Google Scholar
  13. 13.
    Stadler, R.: Analytische und sprengstofftechnische Untersuchungen an Azetylensilber. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 33, 302–305 (1938)Google Scholar
  14. 14.
    Bowden, F.P., McLaren, A.C.: Conditions of explosion of azides: effect of size on detonation velocity. Nature 175, 631–632 (1955)CrossRefGoogle Scholar
  15. 15.
    Friederich, W.: Überhöhte Detonationsgeschwindigkeiten. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 31, 253 (1936)Google Scholar
  16. 16.
    Baum, F.A., Stanjukovich, J.K., Sechter, B.I.: In: Fyzika vzryva, p. 290. Nauka, Moskva (1959)Google Scholar
  17. 17.
    Wöhler, L., Martin, F.: Die Initialwirkung von Aziden und Fulminaten. Zeitschrift für das Gesamte Schiess- und Sprengstoffwesen 30, 18–21 (1917)Google Scholar
  18. 18.
    Clark, L.V.: Diazodinitrophenol, a detonating explosive. J. Ind. Eng. Chem. 25, 663–669 (1933)CrossRefGoogle Scholar
  19. 19.
    Taylor, C.A., Rinkenbach, W.H.: H.M.T.D. - a new detonating explosive. Army Ordnance 5, 463–466 (1924)Google Scholar
  20. 20.
    Taylor, C.A., Rinkenbach, W.H.: Silver azide: an initiator of detonation. Army Ordnance 5, 824–825 (1925)Google Scholar
  21. 21.
    Bagal, L.I.: Khimiya i tekhnologiya iniciiruyushchikh vzryvchatykh veshchestv. Mashinostroenie, Moskva (1975)Google Scholar
  22. 22.
    Taylor, C.A., Buxton, E.P.: Silver fulminate, an initiator of detonation. Army Ordnance 6, 118–119 (1925)Google Scholar
  23. 23.
    Wallbaum, R.: Sprengtechnische Eigenschaften und Lagerbeständigkeit der wichtigsten Initialsprengstoffe. Zeitschrift für das Gesamte Schiess- und Sprengstoffwesen 34, 197–201 (1939)Google Scholar
  24. 24.
    Strnad, J.: Primary explosives and pyrotechnics - lecture notes. Katedra teorie a technologie výbušin, Univerzita Pardubice (1999)Google Scholar
  25. 25.
    Grant, R.L., Tiffany, J.E.: Factors affecting initiating efficiency of detonators. J. Ind. Eng. Chem. 37, 661–666 (1945)CrossRefGoogle Scholar
  26. 26.
    Zukas, J.A., Walters, W.P.: Explosive Effects and Applications. Springer, New York (1998)CrossRefGoogle Scholar
  27. 27.
    Šelešovský, J., Pachman, J.: Probit analysis in evaluation of explosive’s sensitivity. Cent. Eur. J. Energ. Mater. 7, 269–277 (2010)Google Scholar
  28. 28.
    Krupka, M.: Testing of Energetic Materials. Univerzita Pardubice, Pardubice (2003)Google Scholar
  29. 29.
    Sućeska, M.: Test Methods for Explosives. Springer, New York, NY (1995)CrossRefGoogle Scholar
  30. 30.
    Taylor, A.C., Rinkenbach, W.H.: Sensitivities of detonating compounds to frictional impact, impact, and heat. J. Franklin Inst. 204, 369–376 (1927)CrossRefGoogle Scholar
  31. 31.
    Wallbaum, R.: Sprengtechnische Eigenschaften und Lagerbeständigkeit der wichtigsten Initialsprengstoffe. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 34, 161–163 (1939)Google Scholar
  32. 32.
    Berthman, A.: Die Werkstoffrage bei der Herstellung der Explosivstoffe und Zündstoffe. Chemische Apparatur 27, 243–245 (1940)Google Scholar
  33. 33.
    Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, Dover, NJ (1960–1983)Google Scholar
  34. 34.
    Phillips, A.J.: Technical report no 1202, Report. Picatinny Arsenal, Dover, NJ (1942)Google Scholar
  35. 35.
    Khmelnitskii, L.I.: Spravochnik po vzryvchatym veshchestvam. Voennaya ordena Lenina i ordena Suvorova Artilleriiskaya inzhenernaya akademiya imeni F. E. Dzerzhinskogo, Moskva (1962)Google Scholar
  36. 36.
    Meyer, R., Köhler, J., Homburg, A.: Explosives. Wiley-VCH, Weinheim (2002)CrossRefGoogle Scholar
  37. 37.
    Matyáš, R.:Výzkum vlastností vybraných organických peroxidů. Dissertation, Univerzita Pardubice, Pardubice, Česká Republika (2005)Google Scholar
  38. 38.
    Mavrodi, G.E.: Improvements in or relating to explosives of the organic peroxide class. GB Patent 620,498, 1949Google Scholar
  39. 39.
    Šelešovský, J.: Hodnocení stability a životnosti vojenských výbušin. Diploma thesis, Univerzita Pardubice, Pardubice, Česká Republika (2002)Google Scholar
  40. 40.
    Metz, L.: Die Prüfung von Zündhütchen (Initialsprengstoffen) aus Schlagempfindlichkeit und Flammenwirkung. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 23, 305–308 (1928)Google Scholar
  41. 41.
    Rinkenbach, W.H., Burton, O.E.: Explosive characteristics of tetracene. Army Ordnance 12, 120–123 (1931)Google Scholar
  42. 42.
    Matyáš, R.: Influence of oil on sensitivity and thermal stability of triacetone triperoxide and hexamethylenetriperoxide diamine. In: Proceedings of 8th Seminar on New Trends in Research of Energetic Materials, pp. 674–679, Pardubice, Czech Republic (2005)Google Scholar
  43. 43.
    Marshall, A.: Explosives. Butler and Tanner, London (1917)Google Scholar
  44. 44.
    Ek, S., Menning D.: Purification and sensitivity of triacetone triperoxide (TATP). In: Proceedings of 10th Seminar on New Trends in Research of Energetic Materials, pp. 570–574. Pardubice, Czech Republic (2007)Google Scholar
  45. 45.
    Špičák, S., Šimeček, J.: Chemie a technologie třaskavin. Vojenská technická akademie Antonína Zápotockého, Brno (1957)Google Scholar
  46. 46.
    Orlova, E.Y.: Khimiya i tekhnologiya brizantnykh vzryvchatykh vescestv. Khimiya, Leningrad (1981)Google Scholar
  47. 47.
    Hiskey, M.A., Huynh, M.V.: Primary explosives, US Patent 2006/0030715A1, 2006Google Scholar
  48. 48.
    Yeager, K.: Trace Chemical Sensing of Explosives. Wiley, Hoboken, NJ (2007)Google Scholar
  49. 49.
    Avrami, A., Hutchinson, R.: Sensitivity to Impact and Friction In: Fair, H.D., Walker, R.F. (eds.) Energetic materials 2.- Technology of the Inorganic Azides, vol. 2, pp. 111–162. Plenum, New York, NY (1977)Google Scholar
  50. 50.
    Davis, T.L.: The Chemistry of Powder and Explosives. Wiley, New York, NY (1943)Google Scholar
  51. 51.
    Bowden, F.P., Singh, K.: Size effects in the initiation and growth of explosion. Nature 172, 378–380 (1953)CrossRefGoogle Scholar
  52. 52.
    Singh, K.: Sensitivity of cuprous azide towards heat and impact. Trans. Faraday Soc. 55, 124–129 (1959)CrossRefGoogle Scholar
  53. 53.
    Wöhler, L., Martin, F.: Azides; sensitiveness of. J. Soc. Chem. Ind. 36, 570–571 (1917)Google Scholar
  54. 54.
    Matyáš, R., Šelešovský, J., Musil, T.: Sensitivity to friction for primary explosives. J. Hazard. Mater. 213–214, 236–241 (2012)CrossRefGoogle Scholar
  55. 55.
    Roux, J.J.P.A.: The dependence of friction sensitivity of primary explosives upon rubbing surface roughness. Propell. Explos. Pyrotech. 15, 243–247 (1990)CrossRefGoogle Scholar
  56. 56.
    Millar, R.W.: Lead free initiator materials for small electro explosive devices for medium caliber munitions: Final report 04 June 2003, report QinetiQ/FST/CR032702/1.1, QuinetiQ, Farnborough, UK, 2003Google Scholar
  57. 57.
    Military explosives. Report TM-9-1300-214, Headquarters, Department of the Army, 1984Google Scholar
  58. 58.
    Šelešovský, J., Matyáš, R., Musil T.: Using of the probit analysis for sensitivity tests - sensitivity curve and reliability. In: Proceediongs of 14th Seminar on New Trends in Research of Energetic Materials, pp. 964–968. Univerzita Pardubice, Pardubice, Czech Republic (2011)Google Scholar
  59. 59.
    Strnad, J., Majzlík, J.: Technical Description of Apparatus ESZ KTTV, Report. Institute of energetic materials, University of Pardubice, Pardubice (2001)Google Scholar
  60. 60.
    Talawar, M.B., Agrawal, A.P., Anniyappan, M., Wani, D.S., Bansode, M.K., Gore, G.M.: Primary explosives: Electrostatic discharge initiation, additive effect and its relation to thermal and explosive characteristics. J. Hazard. Mater. 137, 1074–1078 (2006)Google Scholar
  61. 61.
    Strnad, J., Majzlík, J.: Determination of electrostatic spark sensitivity of energetic materials. In: Proceedings of 4th Seminar on New Trends in Research of Energetic Materials, pp. 303–307. University of Pardubice, Pardubice, Czech Republic (2001)Google Scholar
  62. 62.
    Strnad, J., Majzlík, J.: Sample of energetic material as a consumer of electric impulse power during the electrostatic discharge examination. In: Proceedings of 37th International Annual Conference of ICT, pp. 58.1–58.11. Karlsruhe (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Matyáš
    • 1
  • Jiří Pachman
    • 1
  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations