Multimodal Biomedical Imaging Systems

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Optical imaging technologies can provide real-time images of tissues in vivo and have the potential to reveal biochemical and/or molecular information; therefore, they can significantly improve identification of malignancy at early stages. The ability to obtain tissue architectural morphology and molecular information in vivo, without the need for tissue excision, offers advancement in disease diagnostics and therapy. Multimodal imaging systems combining multiple imaging modalities for complementary tissue information offer a number of advantages compared with a single imaging modality and improve the diagnosis and treatment of diseases using distinct imaging techniques.

Keywords

Optical Coherence Tomography Optical Coherence Tomography Imaging Dichroic Mirror Optical Coherence Tomography System Multimodal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Douplik, S. Zanati, N. Marcon, M. Cirocco, B. Wilson, J. Boehm, S. Rychel, J. Fengler, Combined autofluorescence and white-light endoscopy for improved detection of dysplastic colonic lesions, in Biomedical Optics, Technical Digest (CD) (Optical Society of America), paper ME63 (2006)Google Scholar
  2. 2.
    M. Rahman, P. Chaturvedi, A.M. Gillenwater, R.Richards-Kortum, Low-cost, multimodal, portable screening system for early detection of oral cancer. J. Biomed. Opt. 13, 030502 (2008)Google Scholar
  3. 3.
    M.A. Kara, et al., Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus. Gastrointest. Endosc. 64, 176–185 (2006)Google Scholar
  4. 4.
    E. Salomatina, A. Muzikansky, V. Neel, A.N. Yaroslavsky, Multimodal optical imaging and spectroscopy for the intraoperative mapping of nonmelanoma skin cancer. J. Appl. Phys. 105, 102010 (2009)Google Scholar
  5. 5.
    R.J. McNichols, A. Gowda, B.A. Bell, R.M. Johnigan, K.H. Calhoun, M. Motamedi, Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection. in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, ed. by T. Vo-Dinh, W.S. Grundfest, D.A. Benaron. Proc. SPIE 4254, 23–30 (2001)Google Scholar
  6. 6.
    Y.T. Pan, T.Q. Xie, C.W. Du, S. Bastacky, S. Meyers, M.L. Zeidel, Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherent tomography. Opt. Lett. 28, 2485–2487 (2003)Google Scholar
  7. 7.
    Z.G. Wang, D.B. Durand, M. Schoenberg, Y.T. Pan, Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model. J. Urol. 174(6), 2376–2381 (2005)Google Scholar
  8. 8.
    A.R. Tumlinson, L.P. Hariri, U. Utzinger, J.K. Barton, Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Appl. Opt. 43, 113–121 (2004)Google Scholar
  9. 9.
    L.P. Hariri, A.R. Tumlinson, D.G. Besselsen, U. Utzinger, E. Gernere, J.K. Barton, Endoscopic optical coherence tomography and laser induced fluorescence spectroscopy in murine colon cancer model. Lasers Surg. Med. 38(4), 305–313 (2006)Google Scholar
  10. 10.
    J. Barton, F. Guzman, A. Tumlinson, Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy. J. Biomed. Opt. 9(3), 618–623 (2004)Google Scholar
  11. 11.
    S.Y. Ryu, H.Y. Choi, J. Na, E.S. Choi, B.H. Lee, Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber. Opt. Lett. 33, 2347–2349 (2008)Google Scholar
  12. 12.
    S. Yuan, C.A. Roney, J. Wierwille, C.W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R.M. Summers, Y. Chen, Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging. Phys. Med. Biol. 55, 191–206 (2010)Google Scholar
  13. 13.
    Y. Chen, S. Yuan, Q. Li, R. Naphas, J. Wierwille, T.R. Blackwell, P.T. Winnard, V. Raman, K. Glunde, Integrated optical coherence tomography (OCT) and fluorescence laminar optical tomography (FLOT). IEEE J. Sel. Top. Quantum Electron. 16(4), 755–766 (2010)Google Scholar
  14. 14.
    G.M. Dobre, A.Gh. Podoleanu, R.B. Rosen, Simultaneous optical coherence tomography-indocyanine green dye fluorescence imaging system for investigations of the eye’s fundus. Opt. Lett. 30, 58–60 (2005)Google Scholar
  15. 15.
    A.G. Podoleanu, G.M. Dobre, R. Cernat, J.A. Rogers, J. Pedro, R.B. Rosen, P. Garcia, Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system. J. Biomed. Opt. 12(1), 014019 (2007)Google Scholar
  16. 16.
    C.A. Patil, N. Bosschaart, M.D. Keller, T.G. van Leeuwen, A. Mahadevan-Jansen, Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt. Lett. 33, 1135–1137 (2008)Google Scholar
  17. 17.
    J.W. Evans, R.J. Zawadzki, R. Liu, J.W. Chan, S.M. Lane, J.S. Werner, Optical coherence tomography and Raman spectroscopy of the ex-vivo retina. J. Biophoton. 2(6–7), 398–406 (2009)Google Scholar
  18. 18.
    O.R. Sepanovi, Z. Volynskaya, C.R. Kong, L.H. Galindo, R.R. Dasari, M.S. Feld, A multimodal spectroscopy system for real-time disease diagnosis. Rev. Sci. Instrum. 80, 043103 (2009)Google Scholar
  19. 19.
    O.R. Scepanovic, M. Fitzmaurice, A. Miller, C.R. Kong, Z. Volynskaya, R.R. Dasari, J.R. Kramer, M.S. Feld, Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque. J. Biomed. Opt. 16(1), 011009 (2011)Google Scholar
  20. 20.
    O.R. Scepanovic, M. Fitzmaurice, J.A. Gardecki, G. Angheloiu, S. Awasthi, J.T. Motz, J.R., Kramer, R.R. Dasari, M.S. Feld, Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy. J. Biomed. Opt. 11(2), 021007 (2006)Google Scholar
  21. 21.
    J.W. Tunnell, A.E. Desjardins, L. Galindo, I. Georgakoudi, S.A. McGee, J. Mirkovic, M.G. Mueller, J. Nazemi, F.T. Nguyen, A. Wax, Q. Zhang, R.R. Dasari, M.S. Feld, Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia. Technol. Cancer Res. Treat. 2, 505–514 (2003)Google Scholar
  22. 22.
    N. Rajaram, T.J. Aramil, K. Lee, J.S. Reichenberg, T.H. Nguyen, J.W. Tunnell, Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. Appl. Opt. 49, 142–152 (2010)Google Scholar
  23. 23.
    Z. Volynskaya, A.S. Haka, K.L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R.R. Dasari, M.S. Feld, Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J. Biomed. Opt. 13(2), 024012 (2008)Google Scholar
  24. 24.
    E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz, Combined scanning optical coherence and two-photon-excited fluorescence microscopy. Opt. Lett. 24, 969–971 (1999)Google Scholar
  25. 25.
    B.W. Graf, Z. Jiang, H. Tu, S.A. Boppart, Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy. J. Biomed. Opt. 14(3), 034019 (2009)Google Scholar
  26. 26.
    S. Tang, T.B. Krasieva, Z. Chen, B.J. Tromberg, Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source. J. Biomed. Opt. 11, 020502 (2006)Google Scholar
  27. 27.
    C. Vinegoni, T.S. Ralston, W. Tan, W. Luo, D.L. Marks, S.A. Boppart, Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Appl. Phys. Lett. 88, 053901 (2006)Google Scholar
  28. 28.
    M. Autiero, L. Celentano, R. Cozzolino, P. Laccetti, M. Marotta, G. Mettivier, M.C. Montesi, P. Riccio, G. Roberti, P. Russo, Multimodal system for in vivo tumor imaging in mice. Proc. SPIE 6191, 340–352 (2006)Google Scholar
  29. 29.
    W. McLaughlin, D. Vizard, Kodak In Vivo Imaging System: Precise Coregistration of Molecular Imaging with Anatomical X-Ray Imaging in Animals (Application Notes Eastman Kodak Co., Rochester, 2006)Google Scholar
  30. 30.
    A.L. Carlson, L.G. Coghlan, A.M. Gillenwater, R.R. Richards-Kortum, Dual-mode reflectance and fluorescence near-video-rate confocal microscope for architectural, morphological and molecular imaging of tissue. J. Microsc. 228, 11–24 (2007)Google Scholar
  31. 31.
    J. Park, P. Mroz, M.R. Hamblin, A.N. Yaroslavsky, Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models. J. Biomed. Opt. 15, 026023 (2010)Google Scholar
  32. 32.
    M.Y. Al-Arashi, E. Salomatina, A.N. Yaroslavsky, Multimodal confocal microscopy for diagnosing nonmelanoma skin cancers. Lasers Surg. Med. 39, 696–705 (2007)Google Scholar
  33. 33.
    S. Jiao, Z. Xie, H.F. Zhang, C.A. Puliafito, Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt. Lett. 34, 2961–2963 (2009)Google Scholar
  34. 34.
    R. Liang, Optical Design for Biomedical Imaging (SPIE, Washington, 2011)Google Scholar
  35. 35.
    K.F. Kwong, D. Yankelevich, K.C. Chu, J.P. Heritage, A. Dienes, 400-Hz mechanical scanning optical delay line. Opt. Lett. 18, 558–560 (1993)Google Scholar
  36. 36.
    J. Sun, S. Guo, L. Wu, L. Liu, S.W. Choe, B.S. Sorg, H. Xie, 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. Opt. Express 18, 12065–12075 (2010)Google Scholar
  37. 37.
    A.D. Aguirre, P.R. Hertz, Y. Chen, J.G. Fujimoto, W. Piyawattanametha, L. Fan, M.C. Wu, Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging. Opt. Express 15, 2445–2453 (2007)Google Scholar
  38. 38.
    R. Liang, V. Wong, M. Marcus, P. Burns, P. McLaughlin, Multimodal imaging system for dental caries detection. Proc. SPIE 6425, 642502 (2007)Google Scholar
  39. 39.
    R. Liang, V. Wong, P. McLaughlin, Optical design of a multimodal imaging system. Proc. SPIE 6849, 684908 (2008)Google Scholar
  40. 40.
    A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, J. Driller, Assessment of dental caries with Digital Imaging Fiber-Optic TransIllumination (DIFOTI): in vitro study. Caries Res. 31(2), 103–110 (1997)Google Scholar
  41. 41.
    C. Rousseau, S. Poland, J.M. Girkin, A.F. Hall, C.J. Whitters., Development of fibre-optic confocal microscopy for detection and diagnosis of dental caries. Caries Res. 41(4), 245–251 (2007)Google Scholar
  42. 42.
    B.W. Colston, Dental OCT. Opt. Express 3, 230–238 (1998)Google Scholar
  43. 43.
    R.J. Jeon, A. Mandelis, S.H. Abrams, Depth profilometric case studies in caries diagnostics of human teeth using modulated laser radiometry and luminescence. Rev. Sci. Instrum. 74(1), 380–383 (2003)Google Scholar
  44. 44.
    A.C.-T. Ko, L.P. Choo-Smith, M. Hewko, M.G. Sowa, C.C.S. Dong, B. Cleghorn, Detection of early dental caries using polarized Raman spectroscopy. Opt. Express 14, 203–215 (2006)Google Scholar
  45. 45.
    P. Lin, H. Lyu, C.S. Hsu, C. Chang, F. Kao, Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy. Biomed. Opt. Express 2, 149–158 (2011)Google Scholar
  46. 46.
    R.R. Alfano, S.S. Yao, Human teeth with and without dental caries, studied by visible luminescent spectroscopy. J. Dent. Res. 60(2), 120–122 (1981)Google Scholar
  47. 47.
    R.R. Alfano, S.S. Yao, Human teeth with and without caries studied by laser scattering, fluorescence and absorption spectroscopy. IEEE J. Quantum Electron 20, 1512–1516 (1984)Google Scholar
  48. 48.
    H. Bjelkhagen, F. Sundstrom, B Angmar-Manson, H Ryden, Early detection of enamel caries by luminescence excited by visible laser light. J. Swed. Dent. 6, 1–7 (1982)Google Scholar
  49. 49.
    R. Hibst, R. Gall, Development of a diode laser-based fluorescence caries detector. Caries Res. 32, 294, (1998)Google Scholar
  50. 50.
    B.T. Amaechi, Optical coherence tomography for dental caries detection and analysis. Proc. SPIE 4610, 100–108 (2002)Google Scholar
  51. 51.
    D. Fried, Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J. Biomed. Opt. 7(4), 618–627 (2002)Google Scholar
  52. 52.
    B. Amaechi, Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J. Biomed. Opt. 8(4), 642–647 (2003)Google Scholar
  53. 53.
    K. Konig, G. Flemming, R. Hibst, Laser-induced autofluorescence spectroscopy of dental caries. Cell Mol. Biol. 44, 1293–1300 (1998)Google Scholar
  54. 54.
    R. Jones, G. Huynh, G. Jones, D. Fried, Near-infrared transillumination at 1310-nm for the imaging of early dental decay. Opt. Express 11, 2259–2265 (2003)Google Scholar
  55. 55.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A.E. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13, 10523–10538 (2005)Google Scholar
  56. 56.
    Thorlabs OCS1300SS Swept Source OCT System User Guide, Newton, NJ 07860 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of Optical SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations