Cryptography with Asynchronous Logic Automata

  • Peter Schmidt-Nielsen
  • Kailiang Chen
  • Jonathan Bachrach
  • Scott Greenwald
  • Forrest Green
  • Neil Gershenfeld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6805)

Abstract

We introduce the use of asynchronous logic automata (ALA) for cryptography. ALA aligns the descriptions of hardware and software for portability, programmability, and scalability. An implementation of the A5/1 stream cipher is provided as a design example in a concise hardware description language, Snap, and we discuss a power- and timing-balanced cell design.

Keywords

asynchronous cellular cryptography stream cipher power balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delsarte, P., Quisquater, J.J.: Permutation cascades with normalized cells. Information and Control 23, 344–356 (1973)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)Google Scholar
  3. 3.
    Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and applications of cellular automata in cryptography. IEEE Transactions on Computers 43, 1346–1357 (1994)CrossRefGoogle Scholar
  4. 4.
    Seredynski, F., Bouvry, P., Zomaya, A.Y.: Cellular automata computations and secret key cryptography. Parallel Computing 30, 753–766 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Das, D., Ray, A.: A parallel encryption algorithm for block ciphers based on reversible programmable cellular automata. Journal of Computer Science and Engineering 1, 82–90 (2010)Google Scholar
  6. 6.
    Chelton, W.N., Benaissa, M.: Fast elliptic curve cryptography on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16, 198–205 (2008)CrossRefGoogle Scholar
  7. 7.
    Moore, S., Anderson, R., Cunningham, P., Mullins, R., Taylor, G.: Improving smart card security using self-timed circuits. In: Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC 2002), p. 211 (2002)Google Scholar
  8. 8.
    Feldhofer, M., Trathnigg, T., Schnitzer, B.: A self-timed arithmetic unit for elliptic curve cryptography. In: Proceedings of the Euromicro Symposium on Digital System Design (DSD 2002), p. 347 (2002)Google Scholar
  9. 9.
    Gershenfeld, N., Dalrymple, D., Chen, K., Knaian, A., Green, F., Demaine, E.D., Greenwald, S., Schmidt-Nielsen, P.: Reconfigurable asynchronous logic automata (RALA). In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, pp. 1–6. ACM, New York (2010)CrossRefGoogle Scholar
  10. 10.
    Bachrach, J., Greenwald, S., Schmidt-Nielsen, P., Gershenfeld, N.: Spatial programing of asynchronous logic automata (2011) (manuscript)Google Scholar
  11. 11.
    Chen, K., Green, F., Gershenfeld, N.: Asynchronous logic automata ASIC design (2011) (manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Schmidt-Nielsen
    • 1
  • Kailiang Chen
    • 1
  • Jonathan Bachrach
    • 1
  • Scott Greenwald
    • 1
  • Forrest Green
    • 1
  • Neil Gershenfeld
    • 1
  1. 1.MIT Center for Bits and AtomsCambridgeUSA

Personalised recommendations