On Quisquater’s Multiplication Algorithm

  • Marc Joye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6805)


Smart card technologies have had a huge impact on the development of cryptographic techniques for commercial applications. The first cryptographic smart card was introduced in 1979. It implemented the Telepass 1 one-way function using 200 bytes! Next came smart cards with secret-key and public-key capabilities, respectively in 1985 and 1988. Implementing an RSA computation on a smart card was (and still is) a very challenging task. Numerous tips and tricks were used in the design of the resulting smart-card chip P83C852 from Philips using the CORSAIR crypto-coprocessor [1,12]. Among them was a new algorithm for the modular multiplication of two integers, the Quisquater’s multiplication algorithm [10,11]. This algorithm is also present in the subsequent crypto-coprocessors, namely the FAME crypto-coprocessor [4] and its various extensions.


CARDIS Padding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Waleffe, D., Quisquater, J.-J.: CORSAIR: A smart card for public key cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 503–512. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Dhem, J.F.: Design of an efficient public-key cryptographic library for RISC-based smart cards. Ph.D. thesis, Université catholique de Louvain, Louvain-la-Neuve (May 1998)Google Scholar
  3. 3.
    Dhem, J.-F., Joye, M., Quisquater, J.-J.: Normalisation in diminished-radix modulus transformation. Electronics Letters 33(23), 1931 (1997)CrossRefGoogle Scholar
  4. 4.
    Ferreira, R., Malzahn, R., Marissen, P., Quisquater, J.J., Wille, T.: FAME: A 3rd generation coprocessor for optimising public-key cryptosystems in smart-card applications. In: Hartel, P.H., et al. (eds.) Proceedings of the 2nd Smart Card Research and Advanced Applications Conference (CARDIS 1996), pp. 59–72 (1996)Google Scholar
  5. 5.
    Joye, M.: Arithmétique algorithmique: Application au crypto-système à clé publique RSA. Master’s thesis, Université catholique de Louvain, Louvain-la-Neuve (January 1994)Google Scholar
  6. 6.
    Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, 3rd edn., vol. 2. Addison-Wesley, Reading (1997)Google Scholar
  7. 7.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Orton, G., Peppard, L., Tavares, S.: Design of a fast pipelined modular multiplier based on a diminished-radix algorithm. Journal of Cryptology 6(4), 183–208 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Quisquater, J.J.: Fast modular exponentiation without division. In: Quisquater, J.J. (ed.) Rump session of EUROCRYPT 1990, May 21–24, Aarhus, Denmark (1990)Google Scholar
  10. 10.
    Quisquater, J.J.: Procédé de codage selon la méthode dite RSA par un micro-contrôleur et dispositifs utilisant ce procédé. Demande de brevet français, No. de dépôt 90 02274 (February 1990)Google Scholar
  11. 11.
    Quisquater, J.J.: Encoding system according to the so-called RSA method, by means of a microcontroller and arrangement implementing this system. U.S. Patent # 5, 166–978 (1991)Google Scholar
  12. 12.
    Quisquater, J.J., de Waleffe, D., Bournas, J.P.: CORSAIR: A chip with fast RSA capability. In: Chaum, D. (ed.) Smart Card 2000, pp. 199–205. Elsevier Science Publishers, Amsterdam (1991)Google Scholar
  13. 13.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marc Joye
    • 1
  1. 1.Technicolor, Security & Content Protection LabsCesson-Sévigné CedexFrance

Personalised recommendations