Advertisement

Traceable Signature with Stepping Capabilities

  • Olivier Blazy
  • David Pointcheval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6805)

Abstract

Traceable signatures schemes were introduced by Kiayias, Tsiounis and Yung in order to solve traceability issues in group signature schemes. They wanted to enable authorities to delegate some of their detection capabilities to tracing sub-authorities. Instead of opening every single signatures and then threatening privacy, tracing sub-authorities are able to know if a signature was emitted by specific users only.

In 2008, Libert and Yung proposed the first traceable signature schemes proven secure in the standard model. We design another scheme in the standard model, with two instantiations based either on the \(\textsf{SXDH}\) or the \(\textsf{DLin}\) assumptions. Our construction is far more efficient, both in term of group elements for the signature, and pairing computation for the verification. Besides the “step-in” (confirmation) feature that allows a user to prove he was indeed the signer, our construction provides the “step-out” (disavowal) procedure that allows a user to prove he was not the signer.

Since list signature schemes are closely related to this primitive, we consider them, and answer an open problem: list signature schemes are possible without random oracles.

Keywords

Traceable Signature List Signature Standard Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABC+05]
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)Google Scholar
  2. [BBS04]
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  3. [BCC+08]
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Delegatable anonymous credentials. Cryptology ePrint Archive, Report 2008/428 (2008)Google Scholar
  4. [BFI+10]
    Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.: Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 218–235. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. [BFPV11]
    Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on Randomizable Ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. [BSZ05]
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [CHL05]
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. [CSST06]
    Canard, S., Schoenmakers, B., Stam, M., Traoré, J.: List Signature Schemes. Discrete Appl. Math. 154(2), 189–201 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [Cv91]
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  10. [DP06]
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. [DY05]
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. [GS08]
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. [KTY04]
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. [LY09]
    Libert, B., Yung, M.: Efficient Traceable Signatures in the Standard Model. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 187–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. [SPMLS02]
    Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 93–110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. [Wat05]
    Waters, B.R.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Blazy
    • 1
  • David Pointcheval
    • 1
  1. 1.ENS/CNRS/INRIAFrance

Personalised recommendations