Group Theory in Semiconductor Optics

  • K. Hümmer
  • C. Klingshirn
  • Claus F. Klingshirn
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

In this chapter, we shall give an outline of group theory, its connection to quantum mechanics, and its applications in semiconductor optics. We shall present only the most important aspects and rules and generally give no proofs of the various relations.

Keywords

Irreducible Representation Conjugacy Class Point Group Proper Subgroup Mirror Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 60H1.
    V. Heine, Group Theory in Quantum Mechanics (Pergamon, Oxford, 1960)MATHGoogle Scholar
  2. 63K1.
    G.F. Koster et al. (eds.), Properties of the Thirty-Two Point Groups (MIT, Cambridge, 1963)Google Scholar
  3. 64K1.
    R.S. Knox, A. Gold, Symmetry in the Solid State (Benjamin, New York, 1964)MATHGoogle Scholar
  4. 64T1.
    W.A. Tinkham, Group Theory in Quantum Mechanics (McGraw-Hill, New York, 1964)MATHGoogle Scholar
  5. 67S1.
    H.W. Streitwolf, Gruppentheorie in der Festkörperphysik (Akademie-Verlag, Leipzig, 1967)MATHGoogle Scholar
  6. 74B1.
    G.L. Bir, G.E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974)Google Scholar
  7. 76C1.
    K. Cho, Phys. Rev. B 14, 4463 (1976)ADSCrossRefGoogle Scholar
  8. 77G1.
    O. Goede, Phys. Status Solidi (b) 81, 235 (1977)Google Scholar
  9. 85H1.
    B. Hönerlage et al., Phys. Rep. 124, 161 (1985)ADSCrossRefGoogle Scholar
  10. 88L1.
    W. Ludwig, C. Falter, Symmetries in Physics. Springer Series in Solid-State Science, vol. 64 (Springer, Berlin/Heidelberg, 1988)Google Scholar
  11. 90I1.
    T. Inui, Y. Tanabe, Y. Onadera, Group Theory and Its Applications in Physics. Springer Series on Solid State Sciences, vol. 78 (Springer, Berlin, 1990)Google Scholar
  12. 92I1.
    T. Hahn, International Tables for Crystallography Vol. A Space Groups, 3rd edn. (Kluwer, Dordrecht, 1992)Google Scholar
  13. 93J1.
    S. Jorda, U. Rössler, D. Broido, Phys. Rev. B 48, 1669 (1993)ADSCrossRefGoogle Scholar
  14. 94H1.
    Th. Hahn, H. Wondratschek, Symmetry of Crystals. Lecture Notes to the Summer School in Gjuletchitsa, Bulgaria (Heron Press Ltd., Sophia, 1994)Google Scholar
  15. 96I1.
    E.L. Ivchenko, Yu.A. Kaminski, U. Rössler, Phys. Rev. B 54, R2315 (1996)ADSCrossRefGoogle Scholar
  16. 96Y1.
    P.Y. Yu, M. Cardona, Fundamental of Semiconductor (Springer, Berlin/Heidelberg, 1996)Google Scholar
  17. 97I1.
    E.L. Ivchenko, G.E. Pikus, Superlattices and Other Heterostructures, 2nd edn. (Springer, Berlin, 1997)MATHCrossRefGoogle Scholar
  18. 00S1.
    M. Schmidt, et al., Appl. Phys. Lett. 77, 85 (2000)ADSCrossRefGoogle Scholar
  19. 01L1.
    U. Rössler (ed.), Landolt-Börnstein. New Series, Group III, vol. 41a1, part 2 (Springer, Berlin/Heidelberg, 2001)Google Scholar
  20. 02M1.
    A.A. Maksimov, et al., Phys. Status Solidi 229, 35 (2002)MathSciNetCrossRefGoogle Scholar
  21. 03T1.
    E. Tsitisishvili, Spectroscopy of Systems with Spatially Confined Structures, B. Di Bartolo ed., NATO Science Series II, vol. 90 (Kluwer, Dordrecht, 2003), p. 357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. Hümmer
  • C. Klingshirn
  • Claus F. Klingshirn
    • 1
  1. 1.Institut für Angewandte PhysikKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations