One-Way Reversible and Quantum Finite Automata with Advice

  • Tomoyuki Yamakami
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)


We examine characteristic features of reversible and quantum computations in the presence of supplementary information, known as advice. In particular, we present a simple, algebraic characterization of languages recognized by one-way reversible finite automata with advice. With a further elaborate argument, a similar but slightly weaker result for bounded-error one-way quantum finite automata is also proven. As an immediate application of those features, we demonstrate certain containments and separations among various standard language families that are suitably assisted by advice.


Reversible Finite Automaton Quantum Finite Automaton Advice Regular Language Context-free Language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses, and generalizations. In: FOCS 1998, pp. 332–342 (1998)Google Scholar
  2. 2.
    Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31, 1456–1478 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Karp, R., Lipton, R.: Turing machines that take advice. L’Enseignement Mathématique 28, 191–209 (1982)MathSciNetMATHGoogle Scholar
  4. 4.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75 (1997)Google Scholar
  5. 5.
    Nishimura, H., Yamakami, T.: Polynomial-time quantum computation with advice. Inf. Process. Lett. 90, 195–204 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Tadaki, K., Yamakami, T., Lin, J.: Theory of one tape linear time Turing machines. Theor. Comput. Sci. 411, 22–43 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Yamakami, T.: Swapping lemmas for regular and context-free languages (2008), arXiv:0808.4122Google Scholar
  8. 8.
    Yamakami, T.: Immunity and pseudorandomness of context-free languages. Theor. Comput. Sci. 412, 6432–6450 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Yamakami, T.: The roles of advice to one-tape linear-time Turing machines and finite automata. Int. J. Found. Comput. Sci. 21, 941–962 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Yamasaki, T., Kobayashi, H., Imai, H.: Quantum versus deterministic counter automata. Theor. Comput. Sci. 334, 275–297 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomoyuki Yamakami
    • 1
  1. 1.Department of Information ScienceUniversity of FukuiFukuiJapan

Personalised recommendations