Patterns with Bounded Treewidth

  • Daniel Reidenbach
  • Markus L. Schmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)


We show that any parameter of patterns that is an upper bound for the treewidth of appropriate encodings of patterns as relational structures, if restricted to a constant, allows the membership problem for pattern languages to be solved in polynomial time. Furthermore, we identify a new such parameter, called the scope coincidence degree.


Pattern Languages Membership Problem Treewidth Extended Regular Expressions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L.: Treewidth: Characterizations, Applications, and Computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bordihn, H., Dassow, J., Holzer, M.: Extending regular expressions with homomorphic replacement. RAIRO Theoretical Informatics and Applications 44, 229–255 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bremer, J., Freydenberger, D.D.: Inclusion Problems for Patterns with a Bounded Number of Variables. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 100–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions. International Journal of Foundations of Computer Science 14, 1007–1018 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York, Inc., Secaucus (2006)zbMATHGoogle Scholar
  7. 7.
    Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: Proceedings of the 8th National Conference on Artificial Intelligence, pp. 4–9 (1990)Google Scholar
  8. 8.
    Lange, S., Wiehagen, R.: Polynomial-time inference of arbitrary pattern languages. New Generation Computing 8, 361–370 (1991)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mateescu, A., Salomaa, A.: Patterns. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 230–242. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the pattern languages from positive data. Theoretical Computer Science 397, 150–165 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theoretical Computer Science 350, 91–102 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Reidenbach, D.: Discontinuities in pattern inference. Theoretical Computer Science 397, 166–193 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Reidenbach, D., Schmid, M.L.: Finding Shuffle Words That Represent Optimal Scheduling of Shared Memory Access. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 465–476. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Reidenbach, D., Schmid, M.L.: A Polynomial Time Match Test for Large Classes of Extended Regular Expressions. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 241–250. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Reischuk, R., Zeugmann, T.: An average-case optimal one-variable pattern language learner. Journal of Computer and System Sciences 60, 302–335 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rossmanith, P., Zeugmann, T.: Stochastic finite learning of the pattern languages. Machine Learning 44, 67–91 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. Journal of Combinatorial Theory, Series B 58, 22–33 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shinohara, T.: Polynomial Time Inference of Extended Regular Pattern Languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  19. 19.
    Shinohara, T.: Polynomial time inference of pattern languages and its application. In: Proc. 7th IBM MFCS, pp. 191–209 (1982)Google Scholar
  20. 20.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Reidenbach
    • 1
  • Markus L. Schmid
    • 1
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughUK

Personalised recommendations