Cayley Graph Automatic Groups Are Not Necessarily Cayley Graph Biautomatic

  • Alexei Miasnikov
  • Zoran Šunić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

We show that there are Cayley graph automatic groups that are not Cayley graph biautomatic. In addition, we show that there are Cayley graph automatic groups with undecidable Conjugacy Problem and that the Isomorphism Problem is undecidable in the class of Cayley graph automatic groups.

Keywords

Automatic Structure Cayley Graph Automatic Group Cayley Graph Biautomatic Group Conjugacy Problem Isomorphism Problem 

References

  1. 1.
    Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Symposium on Logic in Computer Science, Santa Barbara, CA, pp. 51–62. IEEE Comput. Soc. Press, Los Alamitos (2000)Google Scholar
  2. 2.
    Bogopolski, O., Martino, A., Ventura, E.: Orbit decidability and the conjugacy problem for some extensions of groups. Trans. Amer. Math. Soc. 362(4), 2003–2036 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bridson, M.R.: Optimal isoperimetric inequalities for abelian-by-free groups. Topology 34(3), 547–564 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bridson, M.R., Gilman, R.H.: Formal language theory and the geometry of 3-manifolds. Comment. Math. Helv. 71(4), 525–555 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word processing in groups. Jones and Bartlett Publishers, Boston (1992)MATHGoogle Scholar
  6. 6.
    Grigorchuk, R.I., Nekrashevich, V.V., Sushchanskiĭ, V.I.: Automata, dynamical systems, and groups. Tr. Mat. Inst. Steklova 231(Din. Sist., Avtom. i Beskon. Gruppy), 134–214 (2000)Google Scholar
  7. 7.
    Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures to automatic groups (2011), arXiv:1107.3645v2Google Scholar
  8. 8.
    Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Levitt, G.: Unsolvability of the isomorphism problem for [free abelian]-by-free groups (2008), arXiv:0810.0935v2Google Scholar
  10. 10.
    Šunić, Z., Ventura, E.: The conjugacy problem in automaton groups is not solvable (2010), arXiv:1010.1993v2Google Scholar
  11. 11.
    Zimmermann, B.: Zur Klassifikation höherdimensionaler Seifertscher Faserräume. In: Low-Dimensional Topology (Chelwood Gate, 1982). London Math. Soc. Lecture Note Ser., vol. 95, pp. 214–255. Cambridge Univ. Press, Cambridge (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexei Miasnikov
    • 1
  • Zoran Šunić
    • 2
  1. 1.Department of Mathematical SciencesStevens InstituteHobokenUSA
  2. 2.Department of MathematicsTexas A&M UniversityUSA

Personalised recommendations