Weak Synchronization and Synchronizability of Multitape Pushdown Automata and Turing Machines

  • Oscar H. Ibarra
  • Nicholas Q. Tran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)


Given an n-tape automaton M with a one-way read-only head per tape which is delimited by an end marker $ and a nonnegative integer k, we say that M is weakly k-synchronized if for every n-tuple x = (x 1, …, x n ) that is accepted, there is an accepting computation on x such that no pair of input heads, neither of which is on $, are more than k tape cells apart at any time during the computation. When a head reaches the marker, it can no longer move. As usual, an n-tuple x = (x 1, …, x n ) is accepted if M eventually reaches the configuration where all n heads are on $ in an accepting state. We look at the following problems: (1) Given an n-tape automaton M, is it weakly k-synchronized for a given k (for some k)? and (2) Given an n-tape automaton M, does there exist a weakly k-synchronized automaton for a given k (for some k) M′ such that L(M′) = L(M)? In an earlier paper [1], we studied the case of multitape finite automata (NFAs). Here, we investigate the case of multitape pushdown automata (NPDAs), multitape Turing machines, and other multitape models. The results that we obtain contrast those of the earlier results and involve some rather intricate constructions.


Multitape NPDAs Weakly Synchronized Reversal-bounded Counters Multitape Turing Machines (Un)decidability Halting Problem Post Correspondence Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Egecioglu, O., Ibarra, O.H., Tran, N.: Multitape NFA: weak synchronization of the input heads. In: Proc. of the 38th International Conference on Current Trends in Theory and Practice of Computer Science (to appear, 2012)Google Scholar
  2. 2.
    Ginsburg, G., Spanier, E.: Bounded Algol-like languages. Trans. of the Amer. Math. Society 113, 333–368 (1964)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. Assoc. Comput. Mach. 25, 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ibarra, O.H., Tran, N.: On synchronized multitape and multihead automata. In: Proc. of the 13th Int. Workshop on Descriptional Complexity of Formal Systems, pp. 184–197 (2011)Google Scholar
  5. 5.
    Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic String Verification: An Automata-Based Approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Yu, F., Bultan, T., Ibarra, O.H.: Symbolic String Verification: Combining String Analysis and Size Analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Yu, F., Bultan, T., Ibarra, O.H.: Relational String Verification Using Multi-track Automata. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 290–299. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oscar H. Ibarra
    • 1
  • Nicholas Q. Tran
    • 2
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Mathematics & Computer ScienceSanta Clara UniversitySanta ClaraUSA

Personalised recommendations