Polynomial-Time Algorithms for Learning Typed Pattern Languages

  • Michael Geilke
  • Sandra Zilles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)


This article proposes polynomial-time algorithms for learning typed pattern languages—formal languages that are generated by patterns consisting of terminal symbols and typed variables. A string is generated by a typed pattern by substituting all variables with strings of terminal symbols that belong to the corresponding types.

The algorithms presented consitute non-trivial generalizations of Lange and Wiehagen’s efficient algorithm for learning patterns in which variables are not typed. This is achieved by defining type witnesses to impose structural conditions on the types used in the patterns. It is shown that Lange and Wiehagen’s algorithm implicitly uses a special case of type witnesses. Moreover, the type witnesses for a typed pattern form characteristic sets whose size is linear in the length of the pattern; our algorithm, when processing any set of positive data containing such a characteristic set, will always generate a typed pattern equivalent to the target pattern. Thus our algorithms are of relevance to the area of grammatical inference, in which such characteristic sets are typically studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Angluin, D.: Inductive inference of formal languages from positive data. Inform. Control 45, 117–135 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inform. Control 28, 125–155 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Case, J., Kötzing, T.: Difficulties in Forcing Fairness of Polynomial Time Inductive Inference. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 263–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Geilke, M., Zilles, S.: Learning Relational Patterns. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 84–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Gold, E.M.: Language identification in the limit. Inform. Control 10, 447–474 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    de la Higuera, C.: Characteristic sets for polynominal grammatical inference. In: ICGI, pp. 59–71 (1996)Google Scholar
  9. 9.
    Koshiba, T.: Typed Pattern Languages and Their Learnability. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 367–379. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Lange, S., Wiehagen, R.: Polynomial-time inference of arbitrary pattern languages. New Generation Comput. 8, 361–370 (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    Pitt, L.: Inductive Inference, DFAs, and Computational Complexity. In: Jantke, K.P. (ed.) AII 1986. LNCS, vol. 265, pp. 18–44. Springer, Heidelberg (1987)Google Scholar
  12. 12.
    Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397, 166–193 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shinohara, T.: Polynomial Time Inference of Extended Regular Pattern Languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  14. 14.
    Wright, K.: Inductive identification of pattern languages with restricted substitutions. In: COLT, pp. 111–121 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Geilke
    • 1
  • Sandra Zilles
    • 2
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations