Two-Way Automata Making Choices Only at the Endmarkers

  • Viliam Geffert
  • Bruno Guillon
  • Giovanni Pighizzini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

The question of the state-size cost for simulation of two-way nondeterministic automata (2nfas) by two-way deterministic automata (2dfas) was raised in 1978 and, despite many attempts, it is still open. Subsequently, the problem was attacked by restricting the power of 2dfas (e.g., using a restricted input head movement) to the degree for which it was already possible to derive some exponential gaps between the weaker model and the standard 2nfas. Here we use an opposite approach, increasing the power of 2dfas to the degree for which it is still possible to obtain a subexponential conversion from the stronger model to the standard 2dfas. In particular, it turns out that subexponential conversion is possible for two-way automata that make nondeterministic choices only when the input head scans one of the input tape endmarkers. However, there is no restriction on the input head movement. This implies that an exponential gap between 2nfas and 2dfas can be obtained only for unrestricted 2nfas using capabilities beyond the proposed new model.

As an additional bonus, conversion into a machine for the complement of the original language is polynomial in this model. The same holds for making such machines self-verifying, halting, or unambiguous. Finally, any superpolynomial lower bound for the simulation of such machines by standard 2dfas would imply L ≠ NL. In the same way, the alternating version of these machines is related to L ≟ NL ≟ P, the classical computational complexity problems.

Keywords

Two-way Automata Descriptional Complexity Regular Languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, P.: A note on Sweeping Automata. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 91–97. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  2. 2.
    Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite automata. Tech. Rep. 304, Polish Academy of Sciences (1977)Google Scholar
  3. 3.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science 47, 149–158 (1986); Errata: ibid 302, 497–498MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Duris, P., Hromkovič, J., Rolim, J.D.P., Schnitger, G.: Las Vegas Versus Determinism for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 117–128. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Geffert, V.: An alternating hierarchy for finite automata. In: Non-Classical Models of Automata and Applications (NCMA 2011), pp. 15–36 (2011)Google Scholar
  7. 7.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theor. Comput. Sci. 295, 189–203 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Inf. Comput. 205(8), 1173–1187 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Inf. Comput. 209(7), 1016–1025 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley (1979)Google Scholar
  11. 11.
    Hromkovič, J., Schnitger, G.: Nondeterminism Versus Determinism for Two-way Finite Automata: Generalizations of Sipser’s Separation. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–451. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Computer and System Sciences 22(3), 384–406 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kapoutsis, C.A.: Small Sweeping 2NFAs Are Not Closed Under Complement. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part I. LNCS, vol. 4051, pp. 144–156. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kapoutsis, C.A.: Nondeterminism Is Essential in Small 2FAs with Few Reversals. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 198–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kapoutsis, C.A.: Two-Way Automata versus Logarithmic Space. In: Kulikov, A.S., Vereshchagin, N.K. (eds.) CSR 2011. LNCS, vol. 6651, pp. 359–372. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly versus NL (2011) (submitted manuscript)Google Scholar
  18. 18.
    Micali, S.: Two-way deterministic finite automata are exponentially more succinct than sweeping automata. Information Processing Letters 12(2), 103–105 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: STOC, pp. 275–286. ACM (1978)Google Scholar
  20. 20.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sipser, M.: Halting space-bounded computations. Theor. Comput. Sci. 10, 335–338 (1980)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. Syst. Sci. 21(2), 195–202 (1980)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843. Springer, Heidelberg (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Viliam Geffert
    • 1
  • Bruno Guillon
    • 2
  • Giovanni Pighizzini
    • 3
  1. 1.Department of Computer ScienceP. J. Šafárik UniversityKošiceSlovakia
  2. 2.Université Nice-Sophia Antipolis and École Normale Supérieure de LyonFrance
  3. 3.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoItaly

Personalised recommendations