Automata-Based Symbolic Representations of Polyhedra

  • Bernard Boigelot
  • Julien Brusten
  • Jean-François Degbomont
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

This work describes a data structure, the Implicit Real-Vector Automaton (IRVA), suited for representing symbolically polyhedra, i.e., regions of n-dimensional space defined by finite Boolean combinations of linear inequalities. IRVA can represent exactly arbitrary convex and non-convex polyhedra, including features such as open and closed boundaries, unconnected parts, and non-manifold components. In addition, they provide efficient procedures for deciding whether a point belongs to a given polyhedron, and determining the polyhedron component (vertex, edge, facet, …) that contains a point. An advantage of IRVA is that they can easily be minimized into a canonical form, which leads to a simple and efficient test for equality between represented polyhedra. We also develop an algorithm for computing Boolean combinations of polyhedra represented by IRVA.

Keywords

Transition Relation Explicit State Decision Structure Incidence Relation Boolean Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bieri, H., Nef, W.: Elementary Set Operations with d-Dimensional Polyhedra. In: Noltemeier, H. (ed.) CG-WS 1988. LNCS, vol. 333, pp. 97–112. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  2. 2.
    Boigelot, B., Bronne, L., Rassart, S.: An Improved Reachability Analysis Method for Strongly Linear Hybrid Systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 167–177. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Boigelot, B., Brusten, J., Degbomont, J.-F.: Implicit real vector automata. In: Proc. INFINITY. Electronic Proceedings in Theoretical Computer Science, vol. 39, pp. 63–76 (2010)Google Scholar
  4. 4.
    Boigelot, B., Brusten, J., Leroux, J.: A Generalization of Semenov’s Theorem to Automata Over Real Numbers. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 469–484. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Transactions on Computational Logic 6(3), 614–633 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bournez, O., Maler, O., Pnueli, A.: Orthogonal Polyhedra: Representation and Computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 46–60. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Brusten, J.: On the sets of real vectors recognized by finite automata in multiple bases. Ph.D. thesis, University of Liège (2011)Google Scholar
  8. 8.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)CrossRefGoogle Scholar
  9. 9.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hachenberger, P., Kettner, L., Mehlhorn, K.: Boolean operations on 3D selective Nef complexes: Data structure, algorithms, optimized implementation and experiments. Comput. Geom. 38(1-2), 64–99 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Halbwachs, N., Raymond, P., Proy, Y.E.: Verification of Linear Hybrid Systems by Means of Convex Approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J.: An n logn algorithm for minimizing states in a finite automaton. Tech. rep., Stanford (1971)Google Scholar
  13. 13.
    Le Verge, H.: A note on Chernikova’s algorithm. Tech. rep., IRISA, Rennes (1992)Google Scholar
  14. 14.
    Löding, C.: Efficient minimization of deterministic weak ω-automata. Information Processing Letters 79(3), 105–109 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Requicha, A.A.G.: Representations for rigid solids: Theory, methods, and systems. ACM Comput. Surv. 12(4), 437–464 (1980)CrossRefGoogle Scholar
  16. 16.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of constraint programming. Elsevier (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bernard Boigelot
    • 1
  • Julien Brusten
    • 1
  • Jean-François Degbomont
    • 1
  1. 1.Institut Montefiore, B28Université de LiègeLiègeBelgium

Personalised recommendations