Computational Complexity of Rule Distributions of Non-uniform Cellular Automata

  • Alberto Dennunzio
  • Enrico Formenti
  • Julien Provillard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)


ν-CA are cellular automata which can have different local rules at each site of their lattice. Indeed, the spatial distribution of local rules completely characterizes ν-CA. In this paper, sets of distributions sharing some interesting properties are associated with languages of bi-infinite words. The complexity classes of these languages are investigated providing an initial rough classification of ν-CA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comput. Syst. Sci. 6(5), 448–464 (1972)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berstel, J., Perrin, D.: Theory of Codes. Academic Press (1985)Google Scholar
  3. 3.
    Cattaneo, G., Dennunzio, A., Formenti, E., Provillard, J.: Non-Uniform Cellular Automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 302–313. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata Theory and Applications, vol. 1. IEEE Press (1997)Google Scholar
  5. 5.
    Dennunzio, A., Formenti, E., Provillard, J.: Local rule distributions, language complexity and non-uniform cellular automata. ArXiv e-prints (2011)Google Scholar
  6. 6.
    Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: classes, dynamics, and decidability. ArXiv e-prints (2011)Google Scholar
  7. 7.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Westview Pr., Short Disc (2003)Google Scholar
  8. 8.
    Durand, B., Formenti, E., Róka, Z.: Number-conserving cellular automata I: decidability. Theoretical Computer Science 299(1-3), 523–535 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Durand, B., Formenti, E., Varouchas, G.: On Undecidability of Equicontinuity Classification for Cellular Automata. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 117–128. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Fúster-Sabater, A., Caballero-Gil, P., Pazo-Robles, M.E.: Application of Linear Hybrid Cellular Automata to Stream Ciphers. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 564–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Gerlee, P., Anderson, A.R.A.: Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys. Rev. E 75, 051911 (2007)CrossRefGoogle Scholar
  12. 12.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Theory of Computing Systems 3(4), 320–375 (1969)MathSciNetMATHGoogle Scholar
  13. 13.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley (2006)Google Scholar
  14. 14.
    Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences 48, 149–182 (1994)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dynamical Systems 17(2), 417–433 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, New York (1995)CrossRefMATHGoogle Scholar
  17. 17.
    Litovsky, I., Staiger, L.: Finite acceptance of infinite words. Theoretical Computer Science 174, 1–21 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Manzini, G., Margara, L.: A complete and efficiently computable topological classification of d-dimensional linear cellular automata over Zm. Theoretical Computer Science 221(1-2), 157–177 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Moore, E.F.: Machine models of self-reproduction. In: Proceedings of Symposia in Applied Mathematics, vol. 14, pp. 17–33 (1962)Google Scholar
  20. 20.
    Myhill, J.: The converse of Moore’s garden-of-Eden theorem. Proceedings of the American Mathematical Society 14(4), 685–686 (1963)MathSciNetMATHGoogle Scholar
  21. 21.
    Nivat, M., Perrin, D.: Ensembles reconnaissables de mots biinfinis. In: STOC, pp. 47–59. ACM (1982)Google Scholar
  22. 22.
    Perrin, D., Pin, J.E.: Infinite Words, Pure and Applied Mathematics, vol. 141. Elsevier (2004)Google Scholar
  23. 23.
    Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5, 19–30 (1991)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alberto Dennunzio
    • 2
  • Enrico Formenti
    • 1
  • Julien Provillard
    • 1
  1. 1.Laboratoire I3SUniversité Nice-Sophia AntipolisSophia AntipolisFrance
  2. 2.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano–BicoccaMilanoItaly

Personalised recommendations