Strong Termination for Gap-Order Constraint Abstractions of Counter Systems

  • Laura Bozzelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

We address termination analysis for the class of gap-order constraint systems (GCS), an (infinitely-branching) abstract model of counter machines recently introduced in [8], in which constraints (over ℤ) between the variables of the source state and the target state of a transition are gap-order constraints (GC) [18]. GCS extend monotonicity constraint systems [4], integral relation automata [9], and constraint automata in [12]. Since GCS are infinitely-branching, termination does not imply strong termination, i.e. the existence of an upper bound on the lengths of the runs from a given state. We show the following: (1) checking strong termination for GCS is decidable and Pspace-complete, and (2) for each control location of the given GCS, one can build a GC representation of the set of variable valuations from which strong termination does not hold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Delzanno, G.: On the coverability problem for constrained multiset rewriting. In: Proc. 5th AVIS (2006)Google Scholar
  2. 2.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated parameterized verification of infinite-state processes with global conditions. Formal Methods in System Design 34(2), 126–156 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Ben-Amram, A.: Size-change termination, monotonicity constraints and ranking functions. Logical Methods in Computer Science 6(3) (2010)Google Scholar
  5. 5.
    Ben-Amram, A., Vainer, M.: Complexity Analysis of Size-Change Terminating Programs. In: Second Workshop on Developments in Implicit Computational Complexity (2011)Google Scholar
  6. 6.
    Bozga, M., Gîrlea, C., Iosif, R.: Iterating Octagons. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bozzelli, L.: Strong termination for gap-order constraint abstractions of counter systems. Technical report (2011), http://clip.dia.fi.upm.es/~lbozzelli
  8. 8.
    Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of counter systems. In: Proc. 13th VMCAI, Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Cerans, K.: Deciding Properties of Integral Relational Automata. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Comon, H., Cortier, V.: Flatness Is Not a Weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Information and Computation 205(3), 380–415 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fribourg, L., Richardson, J.: Symbolic Verification with Gap-Order Constraints. In: Gallagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 20–37. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. Journal of ACM 25(1), 116–133 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jonson, N.D.: Computability and Complexity from a Programming Perspective. Foundations of Computing Series. MIT Press (1997)Google Scholar
  16. 16.
    Peterson, J.L.: Petri Net Theory and the Modelling of Systems. Prentice-Hall (1981)Google Scholar
  17. 17.
    Ramsey, F.: On a problem of formal logic. Proceedings of the London Mathematical Society 30, 264–286 (1930)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Revesz, P.Z.: A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-Order Constraints. Theoretical Computer Science 116(1-2), 117–149 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Laura Bozzelli
    • 1
  1. 1.Technical University of Madrid (UPM)MadridSpain

Personalised recommendations