Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts

  • Hervé Lombaert
  • Jean-Marc Peyrat
  • Laurent Fanton
  • Farida Cheriet
  • Hervé Delingette
  • Nicholas Ayache
  • Patrick Clarysse
  • Isabelle Magnin
  • Pierre Croisille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7085)

Abstract

Criteria of normality of the cardiac fibers are important in cardiomyopathies. In this paper, we investigate the differences in the cardiac fiber structures between 10 hearts classified as healthy and 6 hearts classified as abnormal, and determine if properties of the cardiac fiber structures can be discriminants for abnormality. We compare the variability of the fiber directions from abnormal hearts to an atlas of healthy hearts. The human atlas of the cardiac fiber structures is built with an automated framework based on symmetric Log-domain diffeomorphic demons. We study the angular variability of the different fiber structures. Our preliminary results might suggest that a higher variability of the fiber structure directions could possibly characterize abnormality of a heart.

Keywords

Structure Direction Abnormal Heart Healthy Heart Cardiac Fiber Laminar Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2), 411–421 (2006)CrossRefGoogle Scholar
  2. 2.
    Becker, A.E., Caruso, G.: Myocardial disarray. a critical review. British Heart Journal 47(6), 527–538 (1982)CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Jolly, M.-P.: Interactive Organ Segmentation Using Graph Cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Costa, K.D., Holmes, J.W., Mcculloch, A.D.: Modelling cardiac mechanical properties in three dimensions. Mathematical, Physical and Engineering Sciences 359(1783), 1233–1250 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Frindel, C., Robini, M., Croisille, P., Zhu, Y.-M.M.: Comparison of regularization methods for human cardiac diffusion tensor MRI. Med. Im. An. 13(3) (2009)Google Scholar
  6. 6.
    Grajek, S., Lesiak, M., Pyda, M., Zajac, M., Paradowski, S., Kaczmarek, E.: Hypertrophy or hyperplasia in cardiac muscle. post-mortem human morphometric study. European Heart Journal 14(1), 40–47 (1993)CrossRefGoogle Scholar
  7. 7.
    Guimond, A., Meunier, J., Thirion, J.P.: Average Brain Models: A Convergence Study. In: Computer Vision and Image Understanding, pp. 192–210 (2000)Google Scholar
  8. 8.
    Hooks, D.A., Tomlinson, K.A., Marsden, S.G., LeGrice, I.J., Smaill, B.H., Pullan, A.J., Hunter, P.J.: Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart. Circulation Research 91(4), 331–338 (2002)CrossRefGoogle Scholar
  9. 9.
    Karsner, H.T., Saphir, O., Todd, T.W.: The state of the cardiac muscle in hypertrophy and atrophy. The American Journal of Pathology 1(4) (July 1925)Google Scholar
  10. 10.
    LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.. The American Journal of Physiology 269(2) (1995)Google Scholar
  11. 11.
    Lexell, J., Taylor, C.C.: Variability in muscle fibre areas in whole human quadriceps muscle: effects of increasing age. Journal of Anatomy 174, 239–249 (1991)Google Scholar
  12. 12.
    Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Clarysse, P., Delingette, H., Ayache, N.: Statistical Analysis of the Human Cardiac Fiber Architecture from DT-MRI. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 171–179. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Lombaert, H., Peyrat, J.-M., Rapacchi, S., Fanton, L., Delingette, H., Croisille, P., Clarysse, P., Ayache, N.: In: ISMRM (2011)Google Scholar
  14. 14.
    Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: iLogDemons: A Demons-Based registration algorithm for tracking incompressible elastic biological tissues. International Journal of Computer Vision, 1–20 (2010)Google Scholar
  15. 15.
    Peyrat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts. IEEE Transactions on Medical Imaging 26(11), 1500–1514 (2007)CrossRefGoogle Scholar
  16. 16.
    Rapacchi, S., Croisille, P., Pai, V., Grenier, D., Viallon, M., Kellman, P., Mewton, N., Wen, H.: Reducing motion sensitivity in free breathing DWI of the heart with localized Principal Component Analysis. In: ISMRM (2010)Google Scholar
  17. 17.
    Silver, M., Gotlieb, A.I., Schoen, F.R.: Cardiovascular Pathology, 3rd edn. Churchill Livingstone (2001)Google Scholar
  18. 18.
    Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circulatory Research 24(3), 339–347 (1969)CrossRefGoogle Scholar
  19. 19.
    Tezuka, F.: Muscle fiber orientation in normal and hypertrophied hearts. The Tohoku Journal of Experimental Medicine 117(3), 289–297 (1975)CrossRefGoogle Scholar
  20. 20.
    Thom, T., Haase, N., Rosamond, W., Howard, V.J., Rumsfeld, J., Manolio, T., Zheng, Z.-J., Flegal, K., Odonnell, C., Kittner, S., Lloyd-Jones, D., Goff, D.C., Hong, Y.: Heart disease and stroke statistics–2006 update. Circulation 113, 85–151 (2006)CrossRefGoogle Scholar
  21. 21.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)CrossRefGoogle Scholar
  23. 23.
    Wu, M.-T., Tseng, W.-Y.I., Su, M.-Y.M., Liu, C.-P., Chiou, K.-R., Wedeen, V.J., Reese, T.G., Yang, C.-F.: Diffusion Tensor Magnetic Resonance Imaging Mapping the Fiber Architecture Remodeling in Human Myocardium After Infarction: Correlation With Viability and Wall Motion. Circulation 114(10), 1036–1045 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hervé Lombaert
    • 1
    • 2
  • Jean-Marc Peyrat
    • 4
  • Laurent Fanton
    • 3
  • Farida Cheriet
    • 2
  • Hervé Delingette
    • 1
  • Nicholas Ayache
    • 1
  • Patrick Clarysse
    • 3
  • Isabelle Magnin
    • 3
  • Pierre Croisille
    • 3
  1. 1.INRIA, Asclepios TeamSophia-AntipolisFrance
  2. 2.École Polytechnique de MontréalCanada
  3. 3.CREATIS, Université de LyonFrance
  4. 4.Siemens MolecularOxfordUK

Personalised recommendations