Variability of the Human Cardiac Laminar Structure

  • Hervé Lombaert
  • Jean-Marc Peyrat
  • Laurent Fanton
  • Farida Cheriet
  • Hervé Delingette
  • Nicholas Ayache
  • Patrick Clarysse
  • Isabelle Magnin
  • Pierre Croisille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7085)

Abstract

The cardiac fiber architecture has an important role in electrophysiology, in mechanical functions of the heart, and in remodeling processes. The variability of the fibers is the focus of various studies in different species. However, the variability of the laminar sheets is still not well known especially in humans. In this paper, we present preliminary results on a quantitative study on the variability of the human cardiac laminar structure. We show that the laminar structure has a complex variability and we show the possible presence of two populations of laminar sheets. Bimodal distributions of the intersection angle of the third eigenvector of the diffusion tensor have been observed in 10 ex vivo healthy human hearts. Additional hearts will complete the study and further characterize the different populations of cardiac laminar sheets.

Keywords

Intersection Angle Joint Histogram Horizontal Curf Laminar Sheet Tensor Magnetic Resonance Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. MRM 56(2), 411–421 (2006)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–267 (1994)CrossRefGoogle Scholar
  3. 3.
    Bishop, M., Hales, P., Plank, G., Gavaghan, D., Scheider, J., Grau, V.: Comparison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat Ventricular Computational Model. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 87–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Boykov, Y., Jolly, M.-P.: Interactive Organ Segmentation Using Graph Cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart: A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002)CrossRefGoogle Scholar
  6. 6.
    Costa, K.D., Holmes, J.W., McCulloch, A.D.: Modelling cardiac mechanical properties in three dimensions. Mathematical, Physical and Engineering Sciences 359(1783), 1233–1250 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Frindel, C., Robini, M., Croisille, P., Zhu, Y.-M.M.: Comparison of regularization methods for human cardiac diffusion tensor MRI. Med. Im. An. 13(3) (2009)Google Scholar
  8. 8.
    Geerts, L., Bovendeerd, P., Nicolay, K., Arts, T.: Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am. J. of Physiology - Heart and Circulatory Physiology 283(1), H139–H145 (2002)CrossRefGoogle Scholar
  9. 9.
    Gilbert, S., Benson, A., Li, P., Holden, A.: Visualisation of Dog Myocardial Structure from Diffusion Tensor Magnetic Resonance Imaging: The Paradox of Uniformity and Variability. In: Sachse, F.B., Seemann, G. (eds.) FIHM 2007. LNCS, vol. 4466, pp. 403–412. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Guimond, A., Meunier, J., Thirion, J.P.: Average Brain Models: A Convergence Study. In: CVIU, pp. 192–210 (2000)Google Scholar
  11. 11.
    Helm, P.A.: A novel technique for quantifying variability of cardiac anatomy: Application to the dyssynchronous failing heart. PhD thesis, Johns Hopkins University (2005)Google Scholar
  12. 12.
    Helm, P.A., Beg, M.F., Miller, M.I., Winslow, R.L.: Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Annals of the New York Academy of Sciences 1047, 296–307 (2005)CrossRefGoogle Scholar
  13. 13.
    Helm, P.A., Tseng, H.-J.J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. MRM 54(4), 850–859 (2005)CrossRefGoogle Scholar
  14. 14.
    Hooks, D.A., Tomlinson, K.A., Marsden, S.G., LeGrice, I.J., Smaill, B.H., Pullan, A.J., Hunter, P.J.: Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart. Circ. Res. 91(4), 331–338 (2002)CrossRefGoogle Scholar
  15. 15.
    Hsu, E.W., Henriquez, C.S.: Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging. Journal of Cardiovascular Magnetic Resonance 3(4), 339–347 (2001)CrossRefGoogle Scholar
  16. 16.
    LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. of physiology 269(2) (1995)Google Scholar
  17. 17.
    Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Clarysse, P., Delingette, H., Ayache, N.: Statistical Analysis of the Human Cardiac Fiber Architecture from DT-MRI. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 171–179. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Lombaert, H., Peyrat, J.-M., Rapacchi, S., Fanton, L., Delingette, H., Croisille, P., Clarysse, P., Ayache, N.: In: ISMRM (2011)Google Scholar
  19. 19.
    Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: iLogDemons: A Demons-Based registration algorithm for tracking incompressible elastic biological tissues. IJCV, 1–20 (2010)Google Scholar
  20. 20.
    Nielsen, P.M., Le Grice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. of Physiology, Heart Circulatory Physiology 260(4), H1365–H1378 (1991)Google Scholar
  21. 21.
    Peyrat, J.M.: Comparison of Cardiac Anatomy and Function: Statistics on Fibre Architecture from DT-MRI and Registration of 4D CT Images. PhD thesis, Nice Sophia Antipolis University (2009)Google Scholar
  22. 22.
    Peyrat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts. IEEE TMI 26(11), 1500–1514 (2007)Google Scholar
  23. 23.
    Rapacchi, S., Croisille, P., Pai, V., Grenier, D., Viallon, M., Kellman, P., Mewton, N., Wen, H.: Reducing motion sensitivity in free breathing DWI of the heart with localized Principal Component Analysis. In: ISMRM (2010)Google Scholar
  24. 24.
    Silver, M., Gotlieb, A.I., Schoen, F.R.: Cardiovascular Pathology, 3rd edn. Churchill Livingstone (2001)Google Scholar
  25. 25.
    Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circ. Res. 24(3), 339–347 (1969)CrossRefGoogle Scholar
  26. 26.
    Sundar, H., Shen, D., Biros, G., Litt, H., Davatzikos, C.: Estimating Myocardial Fiber Orientations by Template Warping. In: ISBI, pp. 73–76 (2006)Google Scholar
  27. 27.
    Tseng, W.-Y.Y., Wedeen, V.J., Reese, T.G., Smith, R.N., Halpern, E.F.: Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J. of Mag. Res. Im. 17(1), 31–42 (2003)CrossRefGoogle Scholar
  28. 28.
    van Leeuwenhoek, A.: Correspondence with the members of the royal society in london. Letter no 82 (April 1694)Google Scholar
  29. 29.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hervé Lombaert
    • 1
    • 2
  • Jean-Marc Peyrat
    • 4
  • Laurent Fanton
    • 3
  • Farida Cheriet
    • 2
  • Hervé Delingette
    • 1
  • Nicholas Ayache
    • 1
  • Patrick Clarysse
    • 3
  • Isabelle Magnin
    • 3
  • Pierre Croisille
    • 3
  1. 1.INRIA, Asclepios TeamSophia-AntipolisFrance
  2. 2.École Polytechnique de MontréalCanada
  3. 3.CREATIS, Université de LyonFrance
  4. 4.Siemens MolecularOxfordUK

Personalised recommendations