Advertisement

Myocardial Contractility and Regional Work throughout the Cardiac Cycle Using FEM and MRI

  • Vicky Y. Wang
  • Daniel B. Ennis
  • Brett R. Cowan
  • Alistair A. Young
  • Martyn P. Nash
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7085)

Abstract

The role of myocardial contractile force in the progression of cardiovascular diseases such as heart failure (HF) has been the focus of many studies. In order to better understand the mechanisms underlying compromised contractility, finite element (FE) modelling of ventricular mechanics is a useful tool. Distributions of active fibre stress during systole were estimated using left ventricular (LV) FE models that incorporated in vivo MRI tagging data and concurrent LV endocardial pressure recordings to parameterise a time-varying model of myocardial contraction. For five canine hearts, the calcium dependent contractile stress increased to peaks ranging from 33 kPa to 57 kPa during systole. Regional distributions of fibre stretch, stress, and myocardial work were examined in each case. Using this type of integrative biophysical modelling to compare normal and pathological cases will elucidate the underlying physiological mechanisms of cardiac mechanical dysfunction.

Keywords

Magnetic Resonance Imaging (MRI) Left Ventricular (LV) mechanics Finite Element Modelling Active Tension Regional Work 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zile, M.R., Brutsaert, D.L.: New concepts in diatsolic dysfunction and diastolic heart failure: Part I: Diagnosis, prognosis, and measurements of diastolic function. Circulation 105, 1387–1393 (2002)CrossRefGoogle Scholar
  2. 2.
    Zile, M.R., Brutsaert, D.L.: New concepts in diastolic dysfunction and diastolic heart failure: Part II: Causal mechanisms and treatment. Circulation 105, 1503–1508 (2002)CrossRefGoogle Scholar
  3. 3.
    Zile, M.R.: Heart failure with preserved ejection fraction: is this diastolic heart failure? Journal of the American College of Cardiology 41(9), 1519–1522 (2003)CrossRefGoogle Scholar
  4. 4.
    Guccione, J.M., McCulloch, A.D.: Mechanics of active contraction in cardiac muscle: Part I - Constitutive relations for fiber stress that describe deactivation. Journal of Biomechanical Engineering 115(1), 72–81 (1993)CrossRefGoogle Scholar
  5. 5.
    Walker, J.C., Ratcliffe, M.B., Zhang, P., Wallace, A.W., Edward, B.F., Hsu, W., Saloner, D., Guccione, J.M.: Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. American Journal of Physiology - Heart and Circulatory Physiology 289, H692–H700 (2004)CrossRefGoogle Scholar
  6. 6.
    Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L.G., Chapelle, D., Razavi, R.: Cardiac function estimation from MRI using a heart model and data assimilation: Advances and difficulties. Medical Image Analysis 10, 642–656 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sermesant, M., Billet, F., Chabiniok, R., Mansi, T., Chinchapatnam, P., Moireau, P., Peyrat, J.-M., Rhode, K., Ginks, M., Lambiase, P., Arridge, S., Delingette, H., Sorine, M., Rinaldi, C.A., Chapelle, D., Razavi, R., Ayache, N.: Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 239–248. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Niederer, S.A., Plank, G., Chinchapatnam, P., Ginks, M., Lamata, P., Rhode, K.S., Rinaldi, C.A., Razavi, R., Smith, N.P.: Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovascular Research 89(2), 336–343 (2011)CrossRefGoogle Scholar
  9. 9.
    Fleureau, J., Garreau, M., Donal, E., Leclercq, C., Hernández, A.: A Hybrid Tissue-Level Model of the Left Ventricle: Application to the Analysis of the Regional Cardiac Function in Heart Failure. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 258–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Chabiniok, R., Moireau, P., Lesault, P., Rahmouni, A., Deux, J., Chapelle, D.: Trials on Tissue Contractility Estimation from Cardiac Cine MRI Using a Biomechanical Heart Model. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 304–312. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Imperiale, A., Chabiniok, R., Moireau, P., Chapelle, D.: Constitutive Parameter Estimation Methodology Using Tagged-MRI Data. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 409–417. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Wang, V.Y., Lam, H.I., Ennis, D.B., Young, A.A., Nash, M.P.: Passive Ventricular Mechanics Modelling Using MRI of Structure and Function. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 814–821. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Medical Image Analysis 13(5), 773–784 (2009)CrossRefGoogle Scholar
  14. 14.
    Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Cardiac Active Contraction Parameters Estimated from Magnetic Resonance Imaging. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 194–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Ennis, D.B.: Assessment of myocardial structure and function using magnetic resonance imaging. PhD thesis, John Hopkins University, USA (2004)Google Scholar
  16. 16.
    Nielsen, P.M.F., Le Grice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. American Journal of Physiology - Heart and Circulatory Physiology 260(4), H1365–H1378 (1991)Google Scholar
  17. 17.
    LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. American Journal of Physiology - Heart and Circulatory Physiology 269, H571–H582 (1995)Google Scholar
  18. 18.
    Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. Journal of Elasticity 61, 113–141 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering 113, 43–55 (1991)CrossRefGoogle Scholar
  20. 20.
    Hunter, P.J., McCulloch, A.D., ter Keurs, H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Progress in Biophysics and Molecular Biology 69, 289–331 (1998)CrossRefGoogle Scholar
  21. 21.
    Wang, V.Y.: Modelling In Vivo Cardiac Mechanics using MRI and FEM. PhD thesis, The University of Auckland, New Zealand (2011)Google Scholar
  22. 22.
    Niederer, S.A., Smith, N.P.: The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis. PLoS Computational Biology 5(4), e1000371 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vicky Y. Wang
    • 1
  • Daniel B. Ennis
    • 2
  • Brett R. Cowan
    • 3
  • Alistair A. Young
    • 1
    • 3
  • Martyn P. Nash
    • 1
    • 4
  1. 1.Auckland Bioengineering InstituteUniversity of AucklandNew Zealand
  2. 2.Department of Radiological Sciences Diagnostic Cardiovascular ImagingUCLAUSA
  3. 3.Centre for Advanced MRIUniversity of AucklandNew Zealand
  4. 4.Department of Engineering ScienceUniversity of AucklandNew Zealand

Personalised recommendations