Optimization for Multi-Region Segmentation of Cardiac MRI

  • Johannes Ulén
  • Petter Strandmark
  • Fredrik Kahl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7085)

Abstract

We introduce a new multi-region model for simultaneous segmentation of the left and right ventricles, myocardium and the left ventricular papillary muscles in MRI. The model enforces geometric constraints such as inclusion and exclusion between the regions, which makes it possible to correctly segment different regions even though the intensity distributions are identical. We efficiently optimize the model using Lagrangian duality which is faster and more memory efficient than current state of the art. As the optimization is based on global techniques, the resulting segmentations are independent of initialization. We evaluate our approach on two benchmarks with competitive results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MICCAI Cardiac MR Left Ventricle Segmentation Challenge (2009), http://smial.sri.utoronto.ca/LV_Challenge/Home.html
  2. 2.
    Boykov, Y., Jolly, M.: Interactive Organ Segmentation Using Graph Cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV (2003)Google Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI (2004)Google Scholar
  5. 5.
    Delong, A., Boykov, Y.: Globally optimal segmentation of multi-region objects. In: ICCV (2009)Google Scholar
  6. 6.
    Grady, L., Jolly, M.: Weights and Topology: A Study of the Effects of Graph Construction on 3D Image Segmentation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 153–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Heiberg, E., et al.: Design and validation of Segment- freely available software for cardiovascular image analysis. BMC Medical Imaging 10(1), 1 (2010)CrossRefGoogle Scholar
  8. 8.
    Kohli, P., Torr, P.: Dynamic graph cuts for efficient inference in markov random fields. PAMI (2007)Google Scholar
  9. 9.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? PAMI (2004)Google Scholar
  10. 10.
    Lin, X., Cowan, B., Young, A.: Model-based graph cut method for segmentation of the left ventricle. In: IEEE-EMBS (2006)Google Scholar
  11. 11.
    Lorenzo-Valdés, M., et al.: Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Medical Image Analysis 8(3), 255–265 (2004)CrossRefGoogle Scholar
  12. 12.
    Mitchell, S., et al.: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Transactions on Medical Imaging 20(5), 415–423 (2002)CrossRefGoogle Scholar
  13. 13.
    Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic Publishers (2004)Google Scholar
  14. 14.
    Paragios, N.: A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int. Journal Computer Vision 50(3), 345–362 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: CVPR (2007)Google Scholar
  16. 16.
    Strandmark, P., Kahl, F.: Parallel and Distributed Graph Cuts by Dual Decomposition. In: CVPR (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johannes Ulén
    • 1
  • Petter Strandmark
    • 1
  • Fredrik Kahl
    • 1
  1. 1.Centre for Mathematical SciencesLund UniversitySweden

Personalised recommendations