Automatic Segmentation of the Myocardium in Cine MR Images Using Deformable Registration

  • Marie-Pierre Jolly
  • Christoph Guetter
  • Xiaoguang Lu
  • Hui Xue
  • Jens Guehring
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7085)


This paper proposes a system to automatically segment the left ventricle in cardiac MR cine images. Individual frames are segmented using a shortest path algorithm and temporal consistency is enforced through the backward and forward deformation fields of an inverse consistent deformable registration. In addition, a segmentation of the mitral valve plane is obtained from long axis images. This algorithm was applied to 95 datasets as part of the STACOM’11 4D LV Segmentation Challenge. We analyze the results and evaluate the strengths and weaknesses of our system.


Mitral Valve Positive Predictive Value Negative Predictive Value Polar Space Automatic Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El-Baz, A., Gimel’farb, G.: EM based approximation of empirical distributions with linear combinations of discrete Gaussians. In: ICIP, pp. 373–376 (2007)Google Scholar
  2. 2.
    Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Chung, J.D., Cowan, B.R., Dinov, I.D., Finn, J.P., Hunter, P.J., Kadish, A.H., Lee, D.C., Lima, J.A.C., Medrano-Gracia, P., Shivkumar, K., Suinesiaputra, A., Tao, W., Young, A.A.: The Cardiac Atlas Project – an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics (2011)Google Scholar
  3. 3.
    Grady, L., Schwartz, E.L.: Isoperimetric partitioning: A new algorithm for graph partitioning. SIAM Journal on Scientific Computing 27(6), 1844–1866 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Guetter, C., Xue, H., Chefd’hotel, C., Guehring, J.: Efficient symmetric and inverse-consistent deformable registration through interleaved optimization. In: ISBI, pp. 590–593 (2011)Google Scholar
  5. 5.
    Herman, G.T., Carvalho, B.M.: Multiseeded segmentation using fuzzy connectedness. IEEE Trans. Pattern Analysis and Machine Intelligence 23(5), 460–474 (2001)CrossRefGoogle Scholar
  6. 6.
    Jolly, M.-P.: Automatic Recovery of the Left Ventricular Blood Pool in Cardiac Cine MR Images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 110–118. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Jolly, M.P., Guetter, C., Guehring, J.: Cardiac segmentation in MR cine data using inverse consistent deformable registration. In: ISBI (2010)Google Scholar
  8. 8.
    Kadish, A.H., Bello, D., Finn, J.P., Bonow, R.O., Schaechter, A., Subacius, H., Albert, C., Daubert, J.P., Fonseca, C.G., Goldberger, J.J.: Rationale and design for the Defribrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) trial. J. Cardiovascular Electrophysiology 20(9), 982–987 (2009)CrossRefGoogle Scholar
  9. 9.
    Lu, X., Georgescu, B., Jolly, M.-P., Guehring, J., Young, A., Cowan, B., Littmann, A., Comaniciu, D.: Cardiac Anchoring in MRI Through Context Modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 383–390. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lu, X., Wang, Y., Georgescu, B., Littman, A., Comaniciu, D.: D.: Automatic Delineation of Left and Right Ventricles in Cardiac MRI Sequences using a Joint Ventricular Model. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 250–258. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Medical Image Analysis 15, 169–184 (2011)CrossRefGoogle Scholar
  12. 12.
    Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., Wright, G.A.: Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge (2009)Google Scholar
  13. 13.
    Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J., Dell’Italia, L.J.: Left ventricular mass and volume: Fast calculation with guide-point modeling on MR images. Radiology 202(2), 597–602 (2000)CrossRefGoogle Scholar
  14. 14.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: ICCV (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marie-Pierre Jolly
    • 1
  • Christoph Guetter
    • 1
  • Xiaoguang Lu
    • 1
  • Hui Xue
    • 1
  • Jens Guehring
    • 2
  1. 1.Image Analytics and InformaticsSiemens Corporate ResearchPrincetonUSA
  2. 2.Healthcare SectorSiemens AGErlangenGermany

Personalised recommendations