Formation of Bonded Exciplex in the Excited States of Dicyanoanthracene-Pyridine System: Time Dependent Density Functional Theory Study

  • Dani Setiawan
  • Daniel Sethio
  • Muhamad Abdulkadir Martoprawiro
  • Michael Filatov
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 145)

Abstract

Strong quenching of fluorescence was recently observed in pyridine solutions of 9,10-dicyanoanthracene chromophore. It was hypothesized that quenching may be attributed to the formation of bound charge transfer complexes in the excited states of the molecules. In this work, using time-dependent density functional calculations, we investigate the possibility of formation of bonded exciplex states between DCA and pyridine molecules. On the basis of theoretical calculations, it is proposed that a partial electron transfer occurs in the lowest excited state of the dicyanoanthracene-pyridine system which leads to the formation of bonded exciplex species and to quenching of fluorescence from dicyanoanthracene.

Keywords

Excited State Natural Bond Orbital Charge Transfer Complex Potential Energy Curve Time Dependent Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appel, F., Gross, E.K.U., Burke, K.: Phys. Rev. Lett. 90, 43005 (2003)CrossRefGoogle Scholar
  2. 2.
    Baciocchi, E., Crescenzib, C., Lanzalunga, O.: Tetrahedron 53, 4469 (1997)CrossRefGoogle Scholar
  3. 3.
    Casida, M.E.: Time-dependent density functional response theory for molecules. In: Chong, D.P. (ed.) Recent Advances in Density Functional Methods, vol. 1, p. 155. World Scientific, Singapore (1995)CrossRefGoogle Scholar
  4. 4.
    Casida, M.E., Gutierrez, F., Guan, J., Gadea, F.X., Salahub, D.R., Daudley, J.P.: Phys. Chem. 113, 7062 (2000)Google Scholar
  5. 5.
    Casida, M.E., Salahub, D.R.: Phys. Chem. 113, 8918 (2000)Google Scholar
  6. 6.
    Dreuw, A., Weisman, J.L., Head-Gordon, M.: Chem. Phys. 119, 2943 (2003)Google Scholar
  7. 7.
    Gould, I.R., Ege, D., Moser, J.E., Farid, S.: Chem. Soc. 112, 4290 (1990)Google Scholar
  8. 8.
    Jacques, P., Haselbach, E., Henseler, A., Pilloud, D., Suppan, P.: Chem. Soc. Faraday Trans. 87, 3811 (1991)Google Scholar
  9. 9.
    Kizu, N., Itoh, M.: Phys. Chem. 96, 5796 (1992)Google Scholar
  10. 10.
    Magyar, R.J., Tretiak, S.: Chem. Theory. Comp. 3, 976 (2008)Google Scholar
  11. 11.
    Matsuzawa, N., Ishitani, A., Dixon, D.A., Uda, T.: Phys. Chem. 105, 4953 (2001)Google Scholar
  12. 12.
    Nakamura, M., Miki, M., Majima, T.: Bull. Chem. Soc. Jp. 72, 2103 (1999)Google Scholar
  13. 13.
    Okamoto, M., Yamada, K., Nagashima, H., Tanaka, F.: Chem. Phys. Lett. 342, 578 (2001)Google Scholar
  14. 14.
    Jaguar, ver 7.5, p. 5. Schrödinger, LLC, New York, NY (2008)Google Scholar
  15. 15.
    Sension, R.J., Hudson, B.S.: Chem. Phys. 90, 1377 (1989)Google Scholar
  16. 16.
    Setiawan, D., Kazaryan, A., Martoprawiro, M.A., Filatov, M.: Phys. Chem. Chem. Phys. 12, 11238 (2010)Google Scholar
  17. 17.
    Vauthey, E., Högemann, C., Allonas, X.: Phys. Chem. A 102, 7362 (1998)Google Scholar
  18. 18.
    Wang, Y., Haze, O., Dinnocenzo, J.P., Farid, S., Farid, R.S., Gould, I.R.: Org. Chem. 72, 6970 (2007)Google Scholar
  19. 19.
    Wang, Y., Haze, O., Dinnocenzo, J.P., Farid, S., Farid, R.S., Gould, I.R.: Phys. Chem. A 112, 13088 (2008)Google Scholar
  20. 20.
    Zhao, Y., Truhlar, D.G., Phys, J.: Phys. Chem. A 110, 13126 (2006)Google Scholar
  21. 21.
    Zhao, Y., Truhlar, D.G.: Chem. Phys. 125, 194101 (2006)Google Scholar
  22. 22.
    Zhao, Y., Truhlar, D.G.: Theor. Chem. Acc. 120, 215 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Dani Setiawan
    • 1
  • Daniel Sethio
    • 2
  • Muhamad Abdulkadir Martoprawiro
    • 2
  • Michael Filatov
    • 1
  1. 1.Zernike Institute of Advanced MaterialUniversity of GroningenGroningenNetherlands
  2. 2.Department of ChemistryBandung Institute of TechnologyBandungIndonesia

Personalised recommendations