Reducing X-Ray Exposure of 3D Hepatic MDCT Images by Applying an Optimized Feature Preserving Strategy

  • Jiehang Deng
  • Min Qian
  • Guoqing Qiao
  • Yuanlie He
  • Zheng Li
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 145)

Abstract

The X-ray exposure of hepatic MDCT (Multidetector-Row Computed Tomography) images threatens human health. In this paper, the 3D adaptive median filter with local averaging is optimized to improve the image quality of low dose hepatic MDCT images. The modified strategy is designed according to the subtle texture of a hepatic tumor. Filtering experiments are based on phantom images with different dose levels and clinical hepatic ones with a certain dose level. Radiologists’ visual evaluation and voxel value profiles show that the x-ray exposure can be reduced to 60% at least without compromising the quality of diagnostic images.

Keywords

Hepatic Tumor Local Average Quantum Noise Phantom Image Feature Preservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, J.E.: Safety (risk) of diagnostic radiology exposures, pp. 15–17. American College of Radiology, Reston (1996)Google Scholar
  2. 2.
    Okumura, M., Ota, T., Tsukagoshi, S., Katada, K.: New method of evaluating edge-preserving adaptive filters for computed tomography (CT): Digital phantom method. Jpn. Radiol. Technol. 62(7), 971–979 (2006)CrossRefGoogle Scholar
  3. 3.
    Kalra, M.K., Wittram, C., Maher, M.M., Sharma, A., Avinash, G.B., Karau, K., Toth, T.L., Halpern, E., Saini, S., Shepard, J.A.: Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology 228(1), 257–264 (2003)CrossRefGoogle Scholar
  4. 4.
    Kachelrieb, M., Watzke, O., Kalender, W.A.: Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med. Phys. 28(4), 475–490 (2001)CrossRefGoogle Scholar
  5. 5.
    Yasuda, N., Ishikawa, Y., Kodera, Y.: Improvement of image quality in chest MDCT using nonlinear wavelet shrinkage with trimmed-thresholding. Jpn. J. Radiol. Technol. 61(12), 1569–1599 (2005)Google Scholar
  6. 6.
    Sasaki, T., Sasaki, M., Hanari, T., Gakumazawa, H., Noshi, Y., Okumura, M.: Improvement in image quality of noncontrast head images in multidetector-row CT by volume helical scanning with a three-dimensional denoising filter. Radiat. Med. 25(7), 368–440 (2007)CrossRefGoogle Scholar
  7. 7.
    Funama, Y., Awai, K., Miyazaki, O., Goto, T., Nakayama, Y., Shimamura, M., Hiraishi, K., Hori, S., Yamashita, Y.: Radiation dose reduction in hepatic multidetector computed tomography with a novel adaptive noise reduction filter. Radiat. Med. 26(3), 171–177 (2008)CrossRefGoogle Scholar
  8. 8.
    Funama, Y., Awai, K., Miyazaki, O., Nakayama, Y., Goto, T., Omi, Y., Shimonobo, T., Liu, D., Yamashita, Y., Hori, S.: Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Investigative Radiology 41(1), 1–7 (2006)CrossRefGoogle Scholar
  9. 9.
    Trægde Martinsen, A.C., Kjernlie Sæther, H., Olsen, D.R., Skaane, P., Olerud, H.M.: Reduction in dose from CT examinations of liver lesions with a new postprocessing filter: a ROC phantom study. Acta Radiol. 49(3), 303–309 (2008)CrossRefGoogle Scholar
  10. 10.
    Deng, J.H., Hiratsuka, K., Ishida, T., Shirai, H., Kuroiwa, J., Odaka, T., Ogura, H.: Improvement of low-dose MDCT images by applying a novel adaptive median filter with local averaging. International Journal of Intelligent Computing in Medical Sciences and Image Processing 3, 31–42 (2009)Google Scholar
  11. 11.
    Chan, R.H., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removal by me-dian-type noise detectors and de-tail-preserving regularization. IEEE Trans. Image. Process. 14(10), 1479–1485 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Jiehang Deng
    • 1
  • Min Qian
    • 2
  • Guoqing Qiao
    • 2
  • Yuanlie He
    • 2
  • Zheng Li
    • 2
  1. 1.Computer FacultyGuangdong University of TechnologyGuangzhouChina
  2. 2.X-ray Department General Hospital of Guangzhou Military CommandGuangzhouChina

Personalised recommendations