Benchmark Based Comparison of Two Fuzzy Rule Base Optimization Methods

  • Zsolt Csaba JohanyákEmail author
  • Olga Papp
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 1)


Parameter optimization is a key step during the creation of a fuzzy rule based system. It also has a determining effect on the resulting system’s performance. In this chapter, we examine the performance of several fuzzy systems obtained by applying two different optimization methods. In each case we start from an initial rule base that is created using fuzzy c-means clustering of a sample data set. The first examined optimization approach is the cross-entropy method while the second one is a hill-climbing based technique. We compare them in case of four benchmarking problems.


Fuzzy System Fuzzy Rule Fuzzy Cluster Iterative Learn Control Cluster Validity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ádámné, A.M., Belina, K.: Effect of multiwall nanotube on the properties of polypropylenes. Int. J. Mater. Form 1, 591–594 (2008)CrossRefGoogle Scholar
  2. 2.
    Alon, G., Kroese, D.P., Raviv, T., Rubinstein, R.Y.: Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment. Ann. Oper. Res. (2005); doi:10.1007/s10479-005-5728-8Google Scholar
  3. 3.
    Ádámné, A.M., Belina, K.: Investigation of PP and PC carbon nanotube composites. In: Proceedings of 6th International Conference of PhD Students, Miskolc, Hungary, pp. 1–6 (2007)Google Scholar
  4. 4.
    Baranyi, P., Kóczy, L.T., Gedeon, T.D.: A generalized concept for fuzzy rule interpolation. IEEE Trans. Fuzzy Syst. 12, 820–837 (2004)CrossRefGoogle Scholar
  5. 5.
    Bezdek, J.C.: Pattern reconition with fuzzy objective function algorithms. Plenum Press, New York (1981)Google Scholar
  6. 6.
    Botzheim, J., Hámori, B., Kóczy, L.T.: Extracting trapezoidal membership functions of a fuzzy rule system by bacterial algorithm. In: Proceedings of 7th Fuzzy Days, Dortmund, Germany, pp. 218–227 (2001)Google Scholar
  7. 7.
    Chen, S.M., Ko, Y.K.: Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on cuts and transformations techniques. IEEE Trans. Fuzzy Syst. 16, 1626–1648 (2008)CrossRefGoogle Scholar
  8. 8.
    Chong, A., Gedeon, T.D., Kóczy, L.T.: Projection based method for sparse fuzzy system generation. In: Proceedings of 2nd International Conference on Scientific Computation and Soft Computing, Crete, Greece, pp. 321–325 (2002)Google Scholar
  9. 9.
    Cohen, I., Golany, B., Shtub, A.: Managing stochastic finite capacity multi-project systems through the cross-entropy methodology. Ann. Oper. Res. 134, 183–199 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    de Boer, P.T.: Analysis and efficient simulation of queueing models of telecommunication systems. Dissertation. University of Twente, Twente (2000)Google Scholar
  11. 11.
    de Boer, P.T., Kroese, D.P., Rubinstein, R.Y.: A fast cross-entropy method for estimating buffer overflows in queueing networks. Manag. Sci. 50, 883–895 (2004)zbMATHCrossRefGoogle Scholar
  12. 12.
    Helvik, B.E., Wittner, O.J.: Using the cross-entropy method to guide/Govern mobile agentïs path finding in networks. In: Pierre, S., Glitho, R.H. (eds.) MATA 2001. LNCS, vol. 2164, pp. 255–268. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Hládek, D., Vaščák, J., Sinčák, P.: Hierarchical fuzzy inference system for robotic pursuit evasion task. In: Proceedings of 6th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2008), Herľany, Slovakia, pp. 273–277 (2008)Google Scholar
  14. 14.
    Homem-de-Mello, T., Rubinstein, R.Y.: Estimation of rare event probabilities using cross-entropy. In: WSC, vol. 1, pp. 310–319 (2002)Google Scholar
  15. 15.
    Huang, Z.H., Shen, Q.: Fuzzy interpolation with generalized representative values. In: Proceedings of 2004 UK Workshop on Computational Intelligence, Loughborough, UK, pp. 161–171 (2004)Google Scholar
  16. 16.
    Johanyák, Z.C.: Fuzzy rule interpolation based on subsethood values. In: Proceedings of 2010 IEEE Interenational Conference on Systems Man and Cybernetics (SMC 2010), Istanbul, Turkey, pp. 2387–2393 (2010)Google Scholar
  17. 17.
    Johanyák, Z.C.: Sparse fuzzy model identification Matlab toolbox - RuleMaker toolbox. In: Proceedings of IEEE 6th International Conference on Computational Cybernetics (ICCC 2008), Stara Lesná, Slovakia, pp. 69–74 (2008)Google Scholar
  18. 18.
    Johanyák, Z.C., Ádámné, A.M.: Mechanical properties prediction of thermoplastic composites using fuzzy models. Scientific Bulletin of “Politehnica” University of Timisoara. Romania. Transactions on Automatic Control and Computer Science 54(68), 185–190 (2009)Google Scholar
  19. 19.
    Johanyák, Z.C., Kovács, S.: Fuzzy rule interpolation by the least squares method. In: Proceedings of 7th International Symposium of Hungarian Researchers on Computational Intelligence (HUCI 2006), Budapest, Hungary, pp. 495–506 (2006)Google Scholar
  20. 20.
    Johanyák, Z.C., Kovács, S.: Sparse fuzzy system generation by rule base extension. In: Proceedings of 11th IEEE International Conference of Intelligent Engineering Systems (INES 2007), Budapest, Hungary, pp. 99–104 (2007)Google Scholar
  21. 21.
    Johanyák, Z.C., Papp, O.: Comparative analysis of two fuzzy rule base optimization methods. In: Proceedings of 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2011), Timisoara, Romania, pp. 235–240 (2011)Google Scholar
  22. 22.
    Johanyák, Z.C., Tikk, D., Kovács, S., Wong, K.K.: Fuzzy Rule Interpolation Matlab toolbox - FRI toolbox. In: Proceedings of IEEE World Congress on Computational Intelligence (WCCI 2006), 15th International Conference on Fuzzy Systems (FUZZ-IEEE 2006), Vancouver, BC, Canada, pp. 1427–1433 (2006)Google Scholar
  23. 23.
    Keith, J., Kroese, D.P.: Sequence alignment by rare event simulation. In: WSC, vol. 1, pp. 320–327 (2002)Google Scholar
  24. 24.
    Kóczy, L.T., Hirota, K.: Approximate reasoning by linear rule interpolation and general approximation. Int. J. Approx. Reason. 9, 197–225 (1993)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kovács, L.: Rule approximation in metric spaces. In: Proceedings of 8th IEEE International Symposium on Applied Machine Intelligence and Informatics (SAMI 2010), Herl’any, Slovakia, pp. 49–52 (2010)Google Scholar
  26. 26.
    Kovács, S.: Extending the fuzzy rule interpolation “FIVE” by fuzzy observation. In: Reusch, B. (ed.) Computational Intelligence. Theory and Applications. AISC, pp. 485–497. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Kovács, S., Kóczy, L.T.: Application of interpolation-based fuzzy logic reasoning inbehaviour-based control structures. In: Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004), Budapest, Hungary, pp. 1543–1548 (2004)Google Scholar
  28. 28.
    Menache, I., Mannor, S., Shimkin, N.: Basis function adaptation in temporal difference reinforcement learning. Ann. Oper. Res. 134, 215–238 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Pires, J.C.M., Martins, F.G., Pereira, M.C., Alvim-Ferraz, M.C.M.: Prediction of ground-level ozone concentrations through statistical models. In: Proceedings of International Joint Conference on Computational Intelligence (IJCCI 2009), Funchal-Madeira, Portugal, pp. 551–554 (2009)Google Scholar
  30. 30.
    Portik, T., Pokorádi, L.: Possibility of use of fuzzy logic in management. In: Proceedings of 16th International Conference on Building Services. Mechanical and Building Industry Days, Debrecen. Hungary, pp. 353–360 (2010)Google Scholar
  31. 31.
    Precup, R.E., Doboli, S., Preitl, S.: Stability analysis and development of a class of fuzzy systems. Eng. Appl. Artif. Intell. 13, 237–247 (2000)CrossRefGoogle Scholar
  32. 32.
    Precup, R.E., Preitl, S., Tar, J.K., Tomescu, M.L., Takács, M., Korondi, P., Baranyi, P.: Fuzzy control system performance enhancement by Iterative Learning Control. IEEE Trans. Ind. Electron 9, 3461–3475 (2008)CrossRefGoogle Scholar
  33. 33.
    Rubinstein, R.Y.: The cross-entropy method for combinatorial and continuous optimization. Methodol Comput. Appl. Prob (1999); doi:10.1023/A:1010091220143Google Scholar
  34. 34.
    Škrjanc, I., Blažič, S., Agamennoni, O.E.: Identification of dynamical systems with a robust interval fuzzy model. Automatica 41, 327–332 (2005)zbMATHCrossRefGoogle Scholar
  35. 35.
    Shepard, D.: A two dimensional interpolation function for irregularly spaced data. In: Proceedings of 23rd ACM International Conference, New York, USA, pp. 517–524 (1968)Google Scholar
  36. 36.
    Vincze, D., Kovács, S.: Incremental rule base creation with fuzzy rule interpolation-based Q-learning. In: Studies in Computational Intelligence - Computational Intelligence in Engineering, vol. 313, pp. 191–203. Springer, Heidelberg (2010)Google Scholar
  37. 37.
    Wang, W., Zhang, Y.: On cluster validity indices. Fuzzy Sets Syst. 158, 2095–2117 (2007)zbMATHCrossRefGoogle Scholar
  38. 38.
    Wong, K.W., Gedeon, T.D.: Petrophysical properties prediction using self-generating fuzzy rules inference system with modified alpha-cut based fuzzy interpolation. In: Proceedings of 7th International Conference of Neural Information Processing (ICONIP 2000), Taejon, Korea, pp. 1088–1092 (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Information TechnologyKecskemét CollegeKecskemétHungary

Personalised recommendations