Advertisement

2-DOF and Fuzzy Control Extensions of Symmetrical Optimum Design Method: Applications and Perspectives

  • Stefan PreitlEmail author
  • Alexandra-Iulia Stînean
  • Radu-Emil Precup
  • Claudia-Adina Dragoş
  • Mircea-Bogdan Rădac
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 1)

Abstract

This chapter treats theoretical results concerning the Symmetrical Optimum method (SO-m), linear 2-DOF and fuzzy control extensions, perspectives and applications. The theoretical results are related to the Extended SO-m (ESO-m) and the double parameterization of the SO-m (2p-SO-m) introduced previously by the authors. Digital implementation aspects are given. The applications deal with speed and position control of rapid plants in mechatronic systems with focus on electrical drives with BLDC motors and variable moment of inertia.

Keywords

Fuzzy Controller Controller Parameter Reference Input Mechatronic System BLDC Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Åström, K.J., Hägglund, T.: PID controllers theory: Design and tuning. Instrument Society of America, Research Triangle Park (1995)Google Scholar
  2. 2.
    Föllinger, O.: Regelungstechnik. Elitera Verlag, Berlin (1985)Google Scholar
  3. 3.
    Preitl, S., Precup, R.E.: An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica 35, 1731–1736 (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Preitl, Z.: Improving disturbance rejection by means of a double parameterization of the symmetrical optimum method. Scientific Bulletin of the Politehnica University of Timişoara, Series Automation and Computer Science 50(64), 25–34 (2005)Google Scholar
  5. 5.
    Preitl, Z.: Model based design methods for speed control applications. Editura Politehnica, Timisoara, Romania (2008)Google Scholar
  6. 6.
    Isermann, R.: Mechatronic systems: Fundamentals. Springer, New York (2005)Google Scholar
  7. 7.
    Baldursson, S.: BLDC motor modelling and control - A Matlab/Simulink implementation. M.Sc. Thesis, Institutionen för Energi och Miljö, Göteborg, Sweden (2005)Google Scholar
  8. 8.
    Nasar, S.A., Boldea, I.: Electric drives, 2nd edn. CRC Press (2005)Google Scholar
  9. 9.
    Boldea, I.: Advanced electric drives. PhD courses (2010-2011). “Politehnica“ Univ. Timisoara, Timisoara (2011)Google Scholar
  10. 10.
    Mink, F., Bahr, A.: Adaptive speed control for drives with variable moments of inertia and natural drequencies. LTi DRIVES GmbH Entwicklung Software. Lahnau, Germany (2011)Google Scholar
  11. 11.
    Christian, J.A., Turbe, M.A., Kabo, E.M., Manno, L.C., Johnson, E.N.: Development of a variable inertia reaction wheel system for spacecraft attitude control. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, USA, p. 13 (2004)Google Scholar
  12. 12.
    Akpolat, Z.H., Asher, G.M., Clare, J.C.: A practical approach to the design of robust speed controllers for machine drives. IEEE Trans. Ind. Electro. 47, 315–324 (2000)CrossRefGoogle Scholar
  13. 13.
    Preitl, S., Precup, R.E.: Cross optimization aspects concerning the extended symmetrical optimum method. In: Preprints of PID 2000 IFAC Workshop, Terrassa, Spain, pp. 254–126 (2000)Google Scholar
  14. 14.
    Preitl, S., Precup, R.E., Preitl, Z.: Control structures and algorithms, vol. 1, 2. Editura Orizonturi Universitare, Timisoara (2009) (in Romanian)Google Scholar
  15. 15.
    Preitl, S., Precup, R.E., Stînean, A.I., Dragoş, C.A., Rădac, M.B.: Extensions in symmetrical optimum design method. Advantages, applications and perspectives. In: Proceedings of 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2011), Timisoara, Romania, pp. 17–22 (2011)Google Scholar
  16. 16.
    Araki, M., Taguchi, H.: Two-degree-of-freedom PID controllers. Int. J. Control Automat. Syst. 1, 401–411 (2003)Google Scholar
  17. 17.
    Preitl, S., Precup, R.E., Preitl, Z.: Aspects concerning the tuning of 2-DOF fuzzy controllers. In: Proceedings of Xth Triennial International SAUM Conference on Systems, Automatic Control and Measurements (SAUM 2010), Nis, Serbia, pp. 210–219 (2010)Google Scholar
  18. 18.
    Škrjanc, I., Blažič, S., Matko, D.: Direct fuzzy model-reference adaptive control. Int. J. Intell. Syst. 17, 943–963 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Blažič, S., Škrjanc, I., Matko, D.: Globally stable direct fuzzy model reference adaptive control. Fuzzy Sets Syst. 139, 3–33 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Guesmi, K., Essounbouli, N., Hamzaoui, A.: Systematic design approach of fuzzy PID stabilizer for DC-DC converters. Energ Convers Manage 49, 2880–2889 (2008)CrossRefGoogle Scholar
  21. 21.
    Peng, C., Han, Q.L.: Delay-range-dependent robust stabilization for uncertain T-S fuzzy control systems with interval time-varying delays. Inf. Sci. 181, 4287–4299 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Garcia, A., Luviano-Juarez, A., Chairez, I., Poznyak, A., Poznyak, T.: Projectional dynamic neural network identifier for chaotic systems: Application to Chua’s circuit. Int. J. Artif. Intell. 6, 1–18 (2011)Google Scholar
  23. 23.
    Stînean, A.I., Preitl, S., Precup, R.E., Pozna, C., Dragoş, C.A., Rădac, M.B.: Speed and position control of BLDC servo systems with low inertia. In: Proceedings of 2nd International Conference on Cognitive Infocommunications (CogInfoCom 2011), Budapest, Hungary, p. 10 (2011)Google Scholar
  24. 24.
    Stînean, A.I.: Electric drives simulations - brushless DC motor drive. PhD project courses. “Politehnica“ Univ. Timisoara, Timisoara (2010) (in Romanian)Google Scholar
  25. 25.
    Baranyi, P., Gedeon, T.D.: Rule interpolation by spatial geometric representation. In: Proceedings of 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 1996), Granada, Spain, pp. 483–488 (1996)Google Scholar
  26. 26.
    Baranyi, P., Yam, Y., Várkonyi-Kóczy, A.R., Patton, R.J., Michelberger, P., Sugiyama, M.: SVD based complexity reduction to TS fuzzy models. IEEE Trans. Ind. Electron 49, 433–443 (2002)CrossRefGoogle Scholar
  27. 27.
    Horváth, L., Rudas, I.J.: Modelling and solving methods for engineers. Academic Press, Burlington (2004)Google Scholar
  28. 28.
    Vaščák, J., Madarász, L.: Adaptation of fuzzy cognitive maps - a comparison study. Acta Polytechnica Hungarica 7, 109–122 (2010)Google Scholar
  29. 29.
    Johanyák, Z.C.: Student evaluation based on fuzzy rule interpolation. Int. J. Artif. Intell. 5, 37–55 (2010)Google Scholar
  30. 30.
    Zhang, J., Shi, P., Xia, Y.: Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Trans. Fuzzy Syst. 18, 700–711 (2010)CrossRefGoogle Scholar
  31. 31.
    Iglesias, J.A., Angelov, P., Ledezma, A., Sanchis, A.: Evolving classification of agents’ behaviors: a general approach. Evolving Syst. 1, 161–171 (2010)CrossRefGoogle Scholar
  32. 32.
    Linda, O., Manic, M.: Self-organizing fuzzy haptic teleoperation of mobile robot using sparse sonar data. IEEE Trans. Ind. Electron 58, 3187–3195 (2011)CrossRefGoogle Scholar
  33. 33.
    Kasabov, N., Abdull Hamed, N.H.: Quantum-inspired particle swarm optimisation for integrated feature and parameter optimisation of evolving spiking neural networks. Int. J. Artif. Intell. 7, 114–124 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Preitl
    • 1
    Email author
  • Alexandra-Iulia Stînean
    • 1
  • Radu-Emil Precup
    • 1
  • Claudia-Adina Dragoş
    • 1
  • Mircea-Bogdan Rădac
    • 1
  1. 1.Department of Automation and Applied Informatics“Politehnica” University of TimisoaraTimisoaraRomania

Personalised recommendations