Towards More Realistic Human Behaviour Simulation: Modelling Concept, Deriving Ontology and Semantic Framework

  • Ladislav Hluchý
  • Marcel Kvassay
  • Štefan Dlugolinský
  • Bernhard Schneider
  • Holger Bracker
  • Bartosz Kryza
  • Jacek Kitowski
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 1)

Abstract

This chapter argues in favour of semantic methods and approaches to human behaviour modelling. Semantic perspective can provide a seamless bridge between theoretical models and their software implementations, as well as contribute towards elegant and generic modular structure of the resulting simulation system. We describe our work in progress regarding highly realistic models of human behaviour and the impact of ontological reasoning on real-time simulations. We illustrate our approach in the context of the EDA project A-0938-RT-GC EUSAS, where we plan to implement it.

Keywords

Agent Type Crowd Simulation Ontological Reasoning State Transition Function Reference String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hluchý, L., Kvassay, M., Dlugolinský, Š., Schneider, B., Bracker, H., Kryza, B., Kitowski, J.: Handling internal complexity in highly realistic agent-based models of human behaviour. In: Proc. 6th Int. Symp. on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, pp. 11–16 (2011)Google Scholar
  2. 2.
    Urban, C.: PECS A reference model for the simulation of multiagent systems. In: Ramzi, S., Klaus, G.T., Gilbert, N. (eds.) Tools and techniques for social science simulation. Physica-Verlag, Heidelberg (2000)Google Scholar
  3. 3.
    Schmidt, B.: Modelling of human behaviour: The PECS reference model. In: Verbraeck, A., Krug, W. (eds.) Proc.14th European Simulation Symp., SCS Europe (2002)Google Scholar
  4. 4.
    Belavkin, R.V.: The role of emotion in problem solving. In: Proc. AISB 2001 Symp. on Emotion, Cognition & Affective Computing, Heslington, York, UK, pp. 49–57 (2001)Google Scholar
  5. 5.
    Marinier, R., Laird, J.E., Lewis, R.L.: Computational unification of cognitive behaviour and emotion. J. Cogn. Syst. Res. 10, 48–69 (2008)CrossRefGoogle Scholar
  6. 6.
    Cochran, R.E., Lee, F.J., Chown, E.: Modeling emotion: Arousal’s impact on memory. In: Proc. 28th Annual Conf. of Cognitive Science Society, pp. 1133–1138 (2006)Google Scholar
  7. 7.
    Cañamero, D.: Modeling motivations and emotions as a basis for intelligent behaviour. In: Proc. 1st Int. Symp. on Autonomous Agents (Agents 1997), pp. 148–155 (1997)Google Scholar
  8. 8.
    Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artif. Intell. 40, 235–282 (1998)CrossRefGoogle Scholar
  9. 9.
    Summers, C., Markusen, E.: Collective violence. Harmful behaviour in groups and governments. Rowman & Littlefield Publishers, Lanham (1999)Google Scholar
  10. 10.
    Berkowitz, L.: Aggression. A psychological analysis. McGraw-Hill, New York (1962)Google Scholar
  11. 11.
    Prentice-Dunn, S., Rogers, R.W.: Deindividuation and the self-Regulation of Behaviour. In: Paulus, P.B. (ed.) Psychology of group influence. Lawrence Erlbaum Associates, Hillsdale (1989)Google Scholar
  12. 12.
    Staub, E.: Predicting collective violence: The psychological and cultural roots of turning against others. In: Summers, C., Markusen, E. (eds.) Collective violence. Rowman & Littlefield Publishers, Lanham (1999)Google Scholar
  13. 13.
    Latané, B.: Dynamic social impact. In: Hegselmann, R., Mueller, U., Troitsch, K.G. (eds.) Philosophy and methodology of the social sciences, vol. 23. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  14. 14.
    Schmidt, B.: The modelling of human behaviour. SCS-Europe BVBA, Ghent (2000)Google Scholar
  15. 15.
    de Paiva, D.C., Vieira, R., Musse, S.R.: Ontology-based crowd simulation for normal life situations. In: Proc. Computer Graphics International (CGI 2005) Conf., Stony Brook, New York, USA, pp. 221–226 (2005)Google Scholar
  16. 16.
    Bandini, S., Manzoni, S., Redaelli, S.: Towards an ontology for crowds description: A proposal based on description logic. In: Umeo, H., et al. (eds.) Proc 8th Int. Conference on Cellular Automata for Research and Industry, Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Okuyama, F.Y., et al.: An ontology for defining environments within multi-agent simulations. In: Guizzardi, G., de Farias, C.R.G. (eds.) Proc. 1st Workshop on Ontologies and Metamodeling in Software and Data Engineering, Florianópolis, Brazil (2006)Google Scholar
  18. 18.
    Laclavík, M., Dlugolinský, Š., Šeleng, M., Kvassay, M., Schneider, B., Bracker, H., Wrzeszcz, M., Kitowski, J., Hluchý, L.: Agent-Based Simulation Platform Evaluation in the Context of Human Behavior Modeling. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011 Workshops. LNCS, vol. 7068, pp. 396–410. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Ladislav Hluchý
    • 1
  • Marcel Kvassay
    • 1
  • Štefan Dlugolinský
    • 1
  • Bernhard Schneider
    • 2
  • Holger Bracker
    • 2
  • Bartosz Kryza
    • 3
  • Jacek Kitowski
    • 3
  1. 1.Institute of InformaticsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.EADS Deutschland GmbHUnterschleißheimGermany
  3. 3.Academic Computer Centre CYFRONET, University of Science and Technology in CracowKrakówPoland

Personalised recommendations