African Trypanosomes as Model System for Functional Analyses of Microbial Motility

  • Markus Engstler
  • Niko Heddergott
  • Tim Krüger
  • Eric Stellamanns
  • Sravanti Uppaluri
  • Thomas Pfohl
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 119)

Abstract

The locomotion of microorganisms in a microscopic world, where cells move through a fluid environment without using inertial forces, is a fascinating phenomenon in life science. Nature offers clever and inspiring strategies for self-propelling in an environment of no inertia. The flagellate African trypanosome, which causes African sleeping sickness, moves with help of a flagellum, which is firmly attached to its cell body. The beating flagellum leads to a strong distortion of the cell body and therefore to a swimming agitation of trypanosomes. We have found that trypanosomes use a hydrodynamic mechanism to defend against host’s immune attacks. Owing to continuous and directional swimming, host-derived antibodies attached to surface glycoproteins of the cell are dragged to the posterior cell pole, where they are rapidly internalized and destroyed. In the following we present new methodology and techniques to quantify the movements of proteins and the motility of cells. Moreover trypanosome motility schemes and their influence on cellular lifestyle and survival strategies are characterized.

Keywords

Primary Cilium Trypanosoma Brucei Persistent Cell Variant Surface Glycoprotein Flagellar Pocket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salisbury, J.L.: Primary cilia: putting sensors together. Current Biology: CB 14(18), R765–R767 (2004), doi:10.1016/j.cub.2004.09.016CrossRefGoogle Scholar
  2. 2.
    Egorova, A.D., van der Heiden, K., Poelmann, R.E., Hierck, B.P.: Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation; Research in Biological Diversity (2011), doi:10.1016/j.diff.2011.11.007Google Scholar
  3. 3.
    Heuser, T., Raytchev, M., Krell, J., Porter, M.E., Nicastro, D.: The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. The Journal of Cell Biology 187(6), 921–933 (2009), doi:10.1083/jcb.200908067CrossRefGoogle Scholar
  4. 4.
    Fliegauf, M., Omran, H.: Novel tools to unravel molecular mechanisms in cilia-related disorders. Trends in Genetics: TIG 22(5), 241–245 (2006), doi:10.1016/j.tig.2006.03.002CrossRefGoogle Scholar
  5. 5.
    Baldari, C.T., Rosenbaum, J.: Intraflagellar transport: it’s not just for cilia anymore. Current Opinion in Cell Biology 22(1), 75–80 (2010), doi:10.1016/j.ceb.2009.10.010CrossRefGoogle Scholar
  6. 6.
    Miles, C.A., Holwill, M.E.: A mechanochemical model of flagellar activity. Biophysical Journal 11(11), 851–859 (1971), doi:10.1016/S0006-3495(71)86259-8CrossRefGoogle Scholar
  7. 7.
    Brokaw, C.J.: Introduction: generation of the bending cycle in cilia and flagella. Progress in Clinical and Biological Research 80, 137–141 (1982)Google Scholar
  8. 8.
    Yagi, T., Kamiya, R.: Novel mode of hyper-oscillation in the paralyzed axoneme of a Chlamydomonas mutant lacking the central-pair microtubules. Cell Motility and the Cytoskeleton 31(3), 207–214 (1995), doi:10.1002/cm.970310304CrossRefGoogle Scholar
  9. 9.
    Lindemann, C.B., Lesich, K.A.: Flagellar and ciliary beating: the proven and the possible. Journal of Cell Science 123(Pt 4), 519–528 (2010), doi:10.1242/jcs.051326CrossRefGoogle Scholar
  10. 10.
    Mitchison, T.J., Mitchison, H.M.: Cell biology: How cilia beat. Nature 463(7279), 308–309 (2010), doi:10.1038/463308aCrossRefGoogle Scholar
  11. 11.
    Afzelius, B.A.: Asymmetry of cilia and of mice and men. The International Journal of Developmental Biology 43(4), 283–286 (1999)Google Scholar
  12. 12.
    Paliwal, S.K., Verma, A.N., Paliwal, S.: Neglected disease - african sleeping sickness: recent synthetic and modeling advances. Scientia Pharmaceutica 79(3), 389–428 (2011), doi:10.3797/scipharm.1012-08CrossRefGoogle Scholar
  13. 13.
    Davis, S., Aksoy, S., Galvani, A.: A global sensitivity analysis for African sleeping sickness. Parasitology 138(4), 516–526 (2011), doi:10.1017/S0031182010001496CrossRefGoogle Scholar
  14. 14.
    Malvy, D., Chappuis, F.: Sleeping sickness. Clinical microbiology and infection. The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 17(7), 986–995 (2011), doi:10.1111/j.1469-0691.2011.03536.xCrossRefGoogle Scholar
  15. 15.
    Engstler, M., Boshart, M.: Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes & Development 18(22), 2798–2811 (2004), doi:10.1101/gad.323404CrossRefGoogle Scholar
  16. 16.
    Fenn, K., Matthews, K.R.: The cell biology of Trypanosoma brucei differentiation. Current Opinion in Microbiology 10(6), 539–546 (2007), doi:10.1016/j.mib.2007.09.014CrossRefGoogle Scholar
  17. 17.
    Field, M.C., Lumb, J.H., Adung’a, V.O., Jones, N.G., Engstler, M.: Macromolecular trafficking and immune evasion in african trypanosomes. International Review of Cell and Molecular Biology 278, 1–67 (2009), doi:10.1016/S1937-6448(09)78001-3CrossRefGoogle Scholar
  18. 18.
    Horn, D., McCulloch, R.: Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Current Opinion in Microbiology 13(6), 700–705 (2010), doi:10.1016/j.mib.2010.08.009CrossRefGoogle Scholar
  19. 19.
    Carrington, M., Boothroyd, J.: Implications of conserved structural motifs in disparate trypanosome surface proteins. Molecular and Biochemical Parasitology 81(2), 119–126 (1996)CrossRefGoogle Scholar
  20. 20.
    Overath, P., Haag, J., Lischke, A., O’Huigin, C.: The surface structure of trypanosomes in relation to their molecular phylogeny. International Journal for Parasitology 31(5-6), 468–471 (2001)CrossRefGoogle Scholar
  21. 21.
    Thomas, J.R., Dwek, R.A., Rademacher, T.W.: Structure, biosynthesis, and function of glycosylphosphatidylinositols. Biochemistry 29(23), 5413–5422 (1990)CrossRefGoogle Scholar
  22. 22.
    Saffman, P.G., Delbruck, M.: Brownian motion in biological membranes. Proceedings of the National Academy of Sciences of the United States of America 72(8), 3111–3113 (1975)CrossRefGoogle Scholar
  23. 23.
    Singer, S.J., Nicolson, G.L.: The structure and chemistry of mammalian cell membranes. The American Journal of Pathology 65(2), 427–437 (1971)Google Scholar
  24. 24.
    Engstler, M., Pfohl, T., Herminghaus, S., Boshart, M., Wiegertjes, G., Heddergott, N., Overath, P.: Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131(3), 505–515 (2007), doi:10.1016/j.cell.2007.08.046CrossRefGoogle Scholar
  25. 25.
    Stahl, N., Mayer, A.M.: Experimental Differentiation between Phototaxis and Motility in Chlamydomonas snowiae. Science 141(3587), 1282–1284 (1963), doi:10.1126/science.141.3587.1282CrossRefGoogle Scholar
  26. 26.
    Bloodgood, R.A., Leffler, E.M., Bojczuk, A.T.: Reversible inhibition of Chlamydomonas flagellar surface motility. The Journal of Cell Biology 82(3), 664–674 (1979)CrossRefGoogle Scholar
  27. 27.
    Field, M.C., Allen, C.L., Dhir, V., Goulding, D., Hall, B.S., Morgan, G.W., Veazey, P., Engstler, M.: New approaches to the microscopic imaging of Trypanosoma brucei. Microscopy and microanalysis. The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 10(5), 621–636 (2004), doi:10.1017/S1431927604040942CrossRefGoogle Scholar
  28. 28.
    Rodriguez, J.A., Lopez, M.A., Thayer, M.C., Zhao, Y., Oberholzer, M., Chang, D.D., Kisalu, N.K., Penichet, M.L., Helguera, G., Bruinsma, R., Hill, K.L., Miao, J.: Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks. Proceedings of the National Academy of Sciences of the United States of America 106(46), 19322–19327 (2009), doi:10.1073/pnas.0907001106CrossRefGoogle Scholar
  29. 29.
    Heddergott, M.: Zellbiologische Aspekte der Motilität von Trypanosoma brucei unter Berücksichtigung der Interaktion mit der Mikroumwelt. PhD-Thesis. University of Wuerzburg (2011)Google Scholar
  30. 30.
    Ralston, K.S., Kabututu, Z., Melehani, J.H., Oberholzer, M., Hill, K.L.: The Trypanosoma brucei flagellum: moving parasites in new directions. Annual Review of Microbiology 63, 335–362 (2009), doi:10.1146/annurev.micro.091208.073353CrossRefGoogle Scholar
  31. 31.
    Uppaluri, S.: Unicellular parasite motility: a quantitative perspective. PhD-thesis. University of Göttingen (2011)Google Scholar
  32. 32.
    Zaburdaev, V., Uppaluri, S., Pfohl, T., Engstler, M., Friedrich, R., Stark, H.: Langevin dynamics deciphers the motility pattern of swimming parasites. Phys. Rev. Lett. 106, 208103 (2011), doi:10.1103/PhysRevLett.106.208103CrossRefGoogle Scholar
  33. 33.
    Uppaluri, S., Nagler, J., Stellamanns, E., Heddergott, N., Herminghaus, S., Engstler, M., Pfohl, T.: Impact of microscopic motility on the swimming behavior of parasites: straighter trypanosomes are more directional. PLoS Comput. Biol. 7, e1002058 (2011), doi:10.1371/journal.pcbi.1002058Google Scholar
  34. 34.
    Köster, S., Pfohl, T.: An in vitro model system for cytoskeletal confinement. Cell Motil Cytoskeleton 66, 771–776 (2009), doi:10.1002/cm.20336CrossRefGoogle Scholar
  35. 35.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Inc., Sunderland (2001)Google Scholar
  36. 36.
    Stellamanns, E.: Cell motility in microfluidic environments. PhD-Thesis. University of Göttingen (2011)Google Scholar
  37. 37.
    Ashkin, A., Dziedzic, J.M.: Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987), doi:10.1126/science.3547653CrossRefGoogle Scholar
  38. 38.
    Parsons, M., Nielsen, B.: Active transport of 2-deoxy-D-glucose in Trypanosoma brucei procyclic forms. Mol. Biochem. Parasitol. 42, 197–203 (1990), doi:10.1016/0166-6851(90)90162-FCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Engstler
    • 1
  • Niko Heddergott
    • 1
  • Tim Krüger
    • 1
  • Eric Stellamanns
    • 2
  • Sravanti Uppaluri
    • 2
  • Thomas Pfohl
    • 2
    • 3
  1. 1.Biozentrum, Department for Cell and Developmental BiologyUniversity of WürzburgWürzburgGermany
  2. 2.Max-Planck-Institute for Dynamics and Self-OrganizationGöttingenGermany
  3. 3.Department of ChemistryUniversity of BaselBaselSwitzerland

Personalised recommendations