Advertisement

Pd-Catalyzed Telomerization of 1,3-Dienes with Multifunctional Renewable Substrates: Versatile Routes for the Valorization of Biomass-Derived Platform Molecules

  • Pieter C. A. BruijnincxEmail author
  • Robin Jastrzebski
  • Peter J. C. Hausoul
  • Robertus J. M. Klein Gebbink
  • Bert M. WeckhuysenEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 39)

Abstract

The dimerization of 1,3-dienes (e.g. butadiene) with the addition of a protic nucleophile (e.g. methanol) yields 2,7-octadienyl ethers in the so-called telomerization reaction. This reaction is most efficiently catalyzed by homogeneous palladium complexes. The field has experienced a renaissance in recent years as many of the platform molecules that can be renewably obtained from biomass are well-suited to act as multifunctional nucleophiles in this reaction. In addition, the process adheres to many of the principles of green chemistry, given that the reaction is 100% atom efficient and produces little waste. The telomerization reaction thus provides a versatile route for the production of valuable bulk and specialty chemicals that are (at least partly) green and renewable. The use of various multifunctional substrates that can be obtained from biomass is covered in this review, as well as mechanistic aspects of the telomerization reaction.

Keywords

Biomass Butadiene Oxygenates Palladium Telomerization 

Notes

Acknowledgements

PCAB and BMW gratefully thank the Smart Mix programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science within the framework of the CatchBio programme. The authors also kindly thank the ACTS-ASPECT programme for financial support. PCAB also gratefully acknowledges NWO for a Veni grant.

References

  1. 1.
    Hartwig J (2010) Organotransition metal chemistry: from bonding to catalysisGoogle Scholar
  2. 2.
    Smutny EJ (1967) Oligomerization and dimerization of butadiene under homogeneous catalysis. Reaction with nucleophiles and synthesis of 1,3,7-octatriene. J Am Chem Soc 89:6793–6794CrossRefGoogle Scholar
  3. 3.
    Takahashi S, Shibano T, Hagihara N (1967) Dimerization of butadiene by palladium complex catalysts. Tetrahedron Lett: 2451–2453Google Scholar
  4. 4.
    Maeda T, Tokitoh Y, Yoshimura N (1987) Phosphonium salts and processes for production of and uses for the same. EP 0296550Google Scholar
  5. 5.
    Tokitoh Y, Yoshimura N (1988) Process for continuous production of octa-2,7-dien-1-ol. EP 0287066Google Scholar
  6. 6.
    Bohley RC, Jacobsen GB, Pelt HL, Schaart BJ, Schenk M, van Oeffelen DAG (1992) Process for producing 1-octene. WO 92/10450Google Scholar
  7. 7.
    Krissmann J, Rattger D, Borgmann C, Kamper K, Nierlich F, Kaizik A, Knipenberg U, Malzkorn R (2005) Method for producing 1-octene from crack-C4. WO 2005/000772Google Scholar
  8. 8.
    Clement ND, Routaboul L, Grotevendt A, Jackstell R, Beller M (2008) Development of palladium-carbene catalysts for telomerization and dimerization of 1,3-dienes: from basic research to industrial applications. Chem Eur J 14:7408–7420CrossRefGoogle Scholar
  9. 9.
    Drent E, Jager WW (2004) Process for the telomerization of conjugated dienes. EP 1671940Google Scholar
  10. 10.
    Slaugh LH (1991) Process for preparing 1-octene. US Patent 5,030,792Google Scholar
  11. 11.
    Brehme V, Neumann M, Bauer F, Rattger D (2008) Method for producing dienes by hydrodimerization. WO 2008/003559Google Scholar
  12. 12.
    Van Leeuwen PWNM, Clément ND, Tschan MJL (2011) New processes for the selective production of 1-octene. Coord Chem Rev 255:1499–1517CrossRefGoogle Scholar
  13. 13.
    Gordillo A, Pachon LD, de Jesus E, Rothenberg G (2009) Palladium-catalysed telomerisation of isoprene with glycerol and polyethylene glycol: a facile route to new terpene derivatives. Adv Synth Catal 351:325–330CrossRefGoogle Scholar
  14. 14.
    Jackstell R, Grotevendt A, Michalik D, El Firdoussi L, Beller M (2007) Telomerization and dimerization of isoprene by in situ generated palladium-carbene catalysts. J Organomet Chem 692:4737–4744CrossRefGoogle Scholar
  15. 15.
    Keim W, Kraus A, Huthmacher K, Hahn R (1999) Method and catalysts for the preparation of 6,10- and 6,9-dimethyl-5,10-undecadienyl-2-ones by the telomerization of isoprene with alkyl acetylacetonates. DE 19730546Google Scholar
  16. 16.
    Maddock SM, Finn MG (2000) Palladium-catalyzed head-to-head telomerization of isoprene with amines. Organometallics 19:2684–2689CrossRefGoogle Scholar
  17. 17.
    Torrente-Murciano L, Lapkin A, Nielsen DJ, Fallis I, Cavell KJ (2010) Telomerisation of long-chain dienes with alcohols using Pd(Imes)(dvds) catalyst. Green Chem 12:866–869CrossRefGoogle Scholar
  18. 18.
    Behr A, Johnen L, Vorholt AJ (2010) Telomerization of myrcene and catalyst separation by thermomorphic solvent systems. ChemCatChem 2:1271–1277CrossRefGoogle Scholar
  19. 19.
    Lopes JM, Petrovski Z, Bogel-Lukasik R, Bogel-Lukasik E (2011) Heterogeneous palladium-catalyzed telomerization of myrcene with glycerol derivatives in supercritical carbon dioxide: a facile route to new building blocks. Green Chem 13:2013–2016CrossRefGoogle Scholar
  20. 20.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the us department of energy’s “Top 10” revisited. Green Chem 12:539–554CrossRefGoogle Scholar
  21. 21.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Bouquillon S, Muzart J, Pinel C, Rataboul F (2010) Palladium-catalyzed telomerization of butadiene with polyols: from mono to polysaccharides. Top Curr Chem 295:93–119CrossRefGoogle Scholar
  23. 23.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRefGoogle Scholar
  24. 24.
    Behr A, Henze G (2011) Use of carbon dioxide in chemical syntheses via a lactone intermediate. Green Chem 13:25–39CrossRefGoogle Scholar
  25. 25.
    Behr A, Becker M, Beckmann T, Johnen L, Leschinski J, Reyer S (2009) Telomerization: advances and applications of a versatile reaction. Angew Chem Int Ed 48:3598–3614CrossRefGoogle Scholar
  26. 26.
    Amatore C, Jutand A, M'Barki MA (1992) Evidence for the formation of zerovalent palladium from Pd(OAc)2 and triphenylphosphine. Organometallics 11:3009–3013CrossRefGoogle Scholar
  27. 27.
    Bohley RC, Jacobsen GB, Pelt HL, Schaart BJ, Schenk M, Van Oeffelen DAG (1992) Production of 1-octene from butadiene. WO 92/10450Google Scholar
  28. 28.
    Hanes RM (1987) Telomerization of conjugated alkadienes to organooxyalkadienes using palladium complex-based catalysts. US Patent 4,642,392Google Scholar
  29. 29.
    Jacobsen GB, Pelt HL, Schaart BJ (1991) Continuous process for the telomerization of conjugated dienes. WO 91/09822Google Scholar
  30. 30.
    Benvenuti F, Carlini C, Lami M, Marchionna M, Patrini R, Galletti AMR, Sbrana G (1999) Telomerization of 1,3-butadiene with alcohols catalyzed by homogeneous palladium(0) complexes in the presence of mono- and diphosphine ligands. J Mol Catal A Chem 144:27–40CrossRefGoogle Scholar
  31. 31.
    Vollmuller F, Magerlein W, Klein S, Krause J, Beller M (2001) Palladium-catalyzed reactions for the synthesis of fine chemicals, 16 – highly efficient palladium-catalyzed telomerization of butadiene with methanol. Adv Synth Catal 343:29–33CrossRefGoogle Scholar
  32. 32.
    Palkovits R, Nieddu I, Klein-Gebbink RJM, Weckhuysen BM (2008) Highly active catalysts for the telomerization of crude glycerol with 1,3-butadiene. ChemSusChem 1:193–196CrossRefGoogle Scholar
  33. 33.
    Palkovits R, Nieddu I, Kruithof CA, Klein-Gebbink RJM, Weckhuysen BM (2008) Palladium-based telomerization of 1,3-butadiene with glycerol using methoxy-functionalized triphenylphosphine ligands. Chem Eur J 14:8995–9005CrossRefGoogle Scholar
  34. 34.
    Briggs J, Patton J, Vermaire-Louw S, Margl P, Hagen H, Beigzadeh D (2010) An improved process for telomerization of butadiene. WO 2010/019360Google Scholar
  35. 35.
    Van Leeuwen P, Tschan M, Garcia-Suarez EJ, Freixa Z, Hagen H (2010) Palladium phosphine complexes for the telomerization of butadiene. WO 2010/130846Google Scholar
  36. 36.
    Maeda T, Tokitoh Y, Yoshimura N (1988) Preparation and use of alkenyl phosphonium salts as telomerization catalyst components. EP 296550Google Scholar
  37. 37.
    Jackstell R, Frisch A, Beller M, Rottger D, Malaun M, Bildstein B (2002) Efficient telomerization of 1,3-butadiene with alcohols in the presence of in situ generated palladium(0)carbene complexes. J Mol Catal A Chem 185:105–112CrossRefGoogle Scholar
  38. 38.
    Jackstell R, Andreu MG, Frisch A, Selvakumar K, Zapf A, Klein H, Spannenberg A, Rottger D, Briel O, Karch R, Beller M (2002) A highly efficient catalyst for the telomerization of 1,3-dienes with alcohols: first synthesis of a monocarbenepalladium(0)-olefin complex. Angew Chem Int Ed 41:986–989CrossRefGoogle Scholar
  39. 39.
    Jackstell R, Grotevendt A, Andreu MG, Beller M (2009) A practical palladium-catalyzed telomerization for the synthesis of functionalized alcohols. Org Proc Res Dev 13:349–353CrossRefGoogle Scholar
  40. 40.
    Jackstell R, Harkal S, Jiao HJ, Spannenberg A, Borgmann C, Rottger D, Nierlich F, Elliot M, Niven S, Cavell KJ, Navarro O, Viciu MS, Nolan SP, Beller M (2004) An industrially viable catalyst system for palladium-catalyzed telomerizations of 1,3-butadiene with alcohols. Chem Eur J 10:3891–3900CrossRefGoogle Scholar
  41. 41.
    Huo C-F, Jackstell R, Beller M, Jiao H (2010) Mechanistic study of palladium-catalyzed telomerization of 1,3-butadiene with methanol. J Mol Model 16:431–436CrossRefGoogle Scholar
  42. 42.
    Jabri A, Budzelaar PHM (2011) Dft study of Pd(PMe3)/NMe3-catalyzed butadiene telomerization of methanol. Organometallics 30:1374–1381CrossRefGoogle Scholar
  43. 43.
    Prinz T, Driessen-Hölscher B (1999) Biphasic catalyzed telomerization of butadiene and ammonia: kinetics and new ligands for regioselective reactions. Chem Eur J 5:2069–2076CrossRefGoogle Scholar
  44. 44.
    Aakermark B, Hansson S, Krakenberger B, Vitagliano A, Zetterberg K (1984) Alkylation of (π-allyl)palladium systems. Mechanism and regiocontrol. Organometallics 3:679–682CrossRefGoogle Scholar
  45. 45.
    Aakermark B, Vitagliano A (1985) Reactivity and syn-anti isomerization of (η3-geranyl)- and (η3-neryl)palladium complexes. Evidence for electronic control of the regiochemistry of nucleophilic addition. Organometallics 4:1275–1283CrossRefGoogle Scholar
  46. 46.
    Vollmuller F, Krause J, Klein S, Magerlein W, Beller M (2000) Palladium-catalyzed reactions for the synthesis of fine chemicals, 14 – control of chemo- and regioselectivity in the palladium-catalyzed telomerization of butadiene with methanol – catalysis and mechanism. Eur J Inorg Chem: 1825–1832Google Scholar
  47. 47.
    Benn R, Jolly PW, Mynott R, Raspel B, Schenker G, Schick K, Schroth G (1985) Intermediates in the palladium-catalyzed reactions of 1,3-dienes. 2. Preparation and structure of (η13-octadienediyl)palladium complexes. Organometallics 4:1945–1953CrossRefGoogle Scholar
  48. 48.
    Harkal S, Jackstell R, Nierlich F, Ortmann D, Beller M (2005) Development of a highly selective and efficient catalyst for 1,3-butadiene dimerization. Org Lett 7:541–544CrossRefGoogle Scholar
  49. 49.
    Benn R, Gabor G, Jolly PW, Mynott R, Raspel B (1985) Intermediates in the palladium-catalyzed reactions of 1,3-dienes.4. The reactions of “η13-octadienediyl-palladium complexes with alkynes and activated alkenes”. J Organomet Chem 296:443–447CrossRefGoogle Scholar
  50. 50.
    Benn R, Jolly PW, Mynott R, Schenker G (1985) Intermediates in the palladium-catalyzed reactions of 1,3-dienes.1. (η33-Dodecatrienediyl)palladium, [Pd(η3, η3–C12H18)]. Organometallics 4:1136–1138CrossRefGoogle Scholar
  51. 51.
    Jolly PW (1985) η3-Allylpalladium compounds. Angew Chem Int Ed 24:283–295CrossRefGoogle Scholar
  52. 52.
    Jolly PW, Mynott R, Raspel B, Schick K (1986) Intermediates in the palladium-catalyzed reactions of 1,3-dienes. The reaction of (η13-octadiendiyl)palladium complexes with acidic substrates. Organometallics 5:473–481CrossRefGoogle Scholar
  53. 53.
    Hausoul PJC, Parvulescu AN, Lutz M, Spek AL, Bruijnincx PCA, Weckhuysen BM, Klein Gebbink RJM (2010) Facile access to key reactive intermediates in the Pd/PR3-catalyzed telomerization of 1,3-butadiene. Angew Chem Int Ed 49:7972–7975CrossRefGoogle Scholar
  54. 54.
    Benn R, Bussemeier B, Holle S, Jolly PW, Mynott R, Tkatchenko I, Wilke G (1985) Transition-metal allyls. 6. The stoichiometric reaction of 1,3-dienes with ligand modified zerovalent-nickel systems. J Organomet Chem 279:63–86CrossRefGoogle Scholar
  55. 55.
    Büch HM, Binger P, Benn R, Krüger C, Rufińska A (1983) Phosphane-induced, stepwise rearrangement of an octadienediyl palladium complex to seven- and nine-membered metallacycles. Angew Chem Int Ed 22:774–775CrossRefGoogle Scholar
  56. 56.
    Tsuji J (1973) Addition reaction of butadiene catalyzed by palladium complexes. Acc Chem Res 6:8–15CrossRefGoogle Scholar
  57. 57.
    Kiji J, Okano T, Nomura T, Saiki K, Sai T, Tsuji J (2001) Mechanistic studies on Pd-catalyzed telomerization and co-cyclization of butadiene: amphiphilicity of bis-π-allylpalladium intermediate in the presence of phosphine ligand. Bull Chem Soc Jpn 74:1939–1945CrossRefGoogle Scholar
  58. 58.
    Parvulescu AN, Hausoul PJC, Bruijnincx PCA, Korhonen ST, Teodorescu C, Klein Gebbink RJM, Weckhuysen BM (2011) Telomerization of 1,3-butadiene with biomass-derived alcohols over a heterogeneous Pd/TPPTS catalyst based on layered double hydroxides. ACS Catal 1:526–536CrossRefGoogle Scholar
  59. 59.
    Hausoul PJC, Parvulescu AN, Lutz M, Spek AL, Bruijnincx PCA, Klein GRJM, Weckhuysen BM (2011) Mechanistic study of the Pd/TOMPP-catalyzed telomerization of 1,3-butadiene with biomass-based alcohols: on the reversibility of phosphine alkylation. ChemCatChem 3:845–852CrossRefGoogle Scholar
  60. 60.
    Hausoul PJC, Bruijnincx PCA, Klein-Gebbink RJM, Weckhuysen BM (2009) Base-free Pd/TOMPP-catalyzed telomerization of 1,3-butadiene with carbohydrates and sugar alcohols. ChemSusChem 2:855–858CrossRefGoogle Scholar
  61. 61.
    Kazuyuki Y, Kenji S, Masahiro M, Junichi F, Shigeaki S (2002) Phosphorus-containing molecules and processes for production of and uses for the same, and phosphines deriving the same and processes for production of the phosphines. EP 1249455Google Scholar
  62. 62.
    Kazuyuki Y, Shigeaki S (2002) JP 2002371090Google Scholar
  63. 63.
    Toshihiko M, Yasuo T, Noraiki Y (1988) Phosphonium salts and processes for production of and uses for the same. EPO 296550Google Scholar
  64. 64.
    Behr A, Leschinski J, Prinz A, Stoffers M (2009) Continuous reactive extraction for selective telomerisation of butadiene with glycerol in a miniplant. Chem Eng Process 48:1140–1145CrossRefGoogle Scholar
  65. 65.
    Behr A, Von Ilsemann G, Keim W, Kruger C, Tsay Y (1986) Octadienyl-bridged bimetallic complexes of palladium as intermediates in telomerization reactions of butadiene. Organometallics 5:514–518CrossRefGoogle Scholar
  66. 66.
    Grenouillet P, Neibecker D, Poirier J, Tkatchenko I (1982) Higher telomers in the Pd-catalyzed reaction of butadiene with alcohols. Angew Chem Int Ed 21:767–768CrossRefGoogle Scholar
  67. 67.
    Bouachir F, Grenouillet P, Neibecker D, Poirier J, Tkatchenko I (1998) Cationic η3-allyl complexes. 21. Telomerization of buta-1,3-diene with z-h compounds mediated by group 10 complexes. J Organomet Chem 569:203–215CrossRefGoogle Scholar
  68. 68.
    Solin N, Kjellgren J, Szabo KJ (2004) Pincer complex-catalyzed allylation of aldehyde and imine substrates via nucleophilic η1-allyl palladium intermediates. J Am Chem Soc 126:7026–7033CrossRefGoogle Scholar
  69. 69.
    Camargo M, Dani P, Dupont J, de Souza RF, Pfeffer M, Tkatchenko I (1996) Cationic cyclopalladated complexes: new catalyst precursors for the telomerization of butadiene with alcohols. J Mol Catal A Chem 109:127–131CrossRefGoogle Scholar
  70. 70.
    Schuchardt U, Dos Santos EN, Santos Dias F (1989) Butadiene oligomerization and telomerization catalyzed by transition metal complexes supported on organic polymers. J Mol Catal 55:340–352CrossRefGoogle Scholar
  71. 71.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG (2009) Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal Today 147:77–85CrossRefGoogle Scholar
  72. 72.
    Behr A, Urschey M (2003) Palladium-catalyzed telomerization of butadiene with ethylene glycol in liquid single phase and biphasic systems: control of selectivity and catalyst recycling. J Mol Catal A Chem 197:101–113CrossRefGoogle Scholar
  73. 73.
    Dzhemilev UM, Kunakova RV, Baibulatova NZ, Tolstikov GA, Panasenko AA (1980) Telomerization of polyatomic alcohols with butadiene, catalyzed by low-valent palladium complexes. Zh Org Khim 16:1157–1161Google Scholar
  74. 74.
    Kaneda K, Kurosaki H, Terasawa M, Imanaka T, Teranishi S (1981) Selective telomerization of butadiene with various nucleophiles catalyzed by polymer-bound palladium(0) complexes. J Org Chem 46:2356–2362CrossRefGoogle Scholar
  75. 75.
    Prinz T, Keim W, Driessen-Hölscher B (1996) Two-phase catalysis: a strategy for avoiding consecutive reactions as exemplified in the telomerization of butadiene and ammonia. Angew Chem Int Ed 35:1708–1710CrossRefGoogle Scholar
  76. 76.
    Behr A, Leschinski J (2009) Application for the solvent water in two-phase telomerisation reactions and recycling of the homogeneous palladium catalysts. Green Chem 11:609–613CrossRefGoogle Scholar
  77. 77.
    Palkovits R, Parvulescu AN, Hausoul PJC, Kruithof CA, Klein Gebbink RJM, Weckhuysen BM (2009) Telomerization of 1,3-butadiene with various alcohols by Pd/TOMPP catalysts: new opportunities for catalytic biomass valorization. Green Chem 11:1155–1160CrossRefGoogle Scholar
  78. 78.
    Grotevendt A, Jackstell R, Michalik D, Gomez M, Beller M (2009) Efficient and selective telomerization of 1,3-butadiene with diols catalyzed by palladium-carbene complexes. ChemSusChem 2:63–70CrossRefGoogle Scholar
  79. 79.
    Broadbent HS, Campbell GC, Bartley WJ, Johnson JH (1959) Rhenium and its compounds as hydrogenation catalysts. 3. Rhenium heptoxide. J Org Chem 24:1847–1854CrossRefGoogle Scholar
  80. 80.
    Forschner TC, Powell JB, Slaugh LH, Weider PR (2000) Process and catalysts for preparing 1,3-propanediol from methyl 3-hydroxypropionate. WO 2000/018712Google Scholar
  81. 81.
    Herrmann U, Emig G (1997) Liquid phase hydrogenation of maleic anhydride and intermediates on copper-based and noble metal catalysts. Ind Eng Chem Res 36:2885–2896CrossRefGoogle Scholar
  82. 82.
    Dunn-Coleman NS, Diaz-Torres M, Chase MW, Trimbur D (1998) Method for the recombinant production of 1,3-propanediol using protein x, protein 1, protein 2, and protein 3 for dehydratase reactivation. WO 98/21341Google Scholar
  83. 83.
    Behr A, Urschey M (2003) Highly selective biphasic telomerization of butadiene with glycols: scope and limitations. Adv Synth Catal 345:1242–1246CrossRefGoogle Scholar
  84. 84.
    Parvulescu AN, Hausoul PJC, Bruijnincx PCA, Klein Gebbink RJM, Weckhuysen BM (2010) Synthesis of octyl-ethers of biomass-based glycols through two competitive catalytic routes: telomerization and etherification. Catal Today 158:130–138CrossRefGoogle Scholar
  85. 85.
    Katryniok B, Kimura H, Skrzynska E, Giradon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem 13:1960–1979CrossRefGoogle Scholar
  86. 86.
    Gallezot P (2011) Conversion of biomass to selected chemical products. Chem Soc Rev. doi: 101039/c101031cs115147a
  87. 87.
    Behr A, Leschinski J, Awungacha C, Simic S, Knoth T (2009) Telomerization of butadiene with glycerol: reaction control through process engineering, solvents, and additives. ChemSusChem 2:71–76CrossRefGoogle Scholar
  88. 88.
    Bigot S, Lai J, Suisse I, Sauthier M, Mortreux A, Castanet Y (2010) Telomerisation of 1,3-butadiene with glycerol under aqueous biphasic conditions: influence of the reaction conditions on the products distribution. Appl Catal A Gen 382:181–189CrossRefGoogle Scholar
  89. 89.
    Pennequin I, Mortreux A, Petit F, Mentech J, Thiriet B (1994) Telomerisation of conjugated diene with sugar (derivs.) – by a reaction in aq. soln. and in the presence of a palladium catalyst and a ligand. FR 2693188Google Scholar
  90. 90.
    Lai J, Bigot S, Sauthier M, Molinier V, Suisse I, Castanet Y, Aubry J-M, Mortreux A (2011) Telomerisation of 1,3-butadiene with 1,4:3,6-dianhydrohexitols: an atom-economic and selective synthesis of amphiphilic monoethers from agro-based diols. ChemSusChem 4:1104–1111CrossRefGoogle Scholar
  91. 91.
    Queneau Y, Fitremann J, Trombotto S (2004) The chemistry of unprotected sucrose: the selectivity issue. C R Chim 7:177–188CrossRefGoogle Scholar
  92. 92.
    von Rybinski W, Hill K (1998) Alkyl polyglycosides – properties and applications of a new class of surfactants. Angew Chem Int Ed 37:1328–1345CrossRefGoogle Scholar
  93. 93.
    Zakharkin LI, Guseva VV, Sulaimankulova DD, Korneva GM (1988) Synthesis of 6-(z-2,7-octadienyl)-alpha-d-galactopyranoses. Zh Org Khim 24:119–121Google Scholar
  94. 94.
    Henin F, Bessmertnykh A, Serra-Muns A, Muzart J, Baillia H (2004) Palladium-catalyzed telomerization of butadiene with tri-o-acetylated pentoses as a convenient route to 2,7-octadienyl glycosides. Eur J Org Chem: 511–520Google Scholar
  95. 95.
    Bessmertnykh A, Henin F, Serra-Muns A, Muzart J, Baillia H (2006) Synthesis of C-8 alkyl glycosides via palladium-catalyzed telomerization of butadiene with o-benzylated aldoses. Carbohydr Res 341:153–159CrossRefGoogle Scholar
  96. 96.
    Gruber B, Weese KJ, Mueller HP, Hill K, Behr A, Tucker JR, Hoagland SM (1992) Octyl ethers and octadienyl ethers of hydroxy compounds such as glucose and sucrose. WO 92/01702Google Scholar
  97. 97.
    Bessmertnykh A, Henin F, Muzart J (2005) Palladium-catalysed telomerization of butadiene with aldoses: a convenient route to non-ionic surfactants based on controlled reactions. J Mol Catal A Chem 238:199–206CrossRefGoogle Scholar
  98. 98.
    Damez C, Estrine B, Bessmertnykh A, Bouquillon S, Henin F, Muzart J (2006) Effects of the reactants concentration in the butadiene telomerization with d-xylose and parallel influence of triethylamine as additive. J Mol Catal A Chem 244:93–98CrossRefGoogle Scholar
  99. 99.
    Estrine B, Bouquillon S, Henin F, Muzart J (2004) Telomerization of butadiene with l-arabinose and d-xylose in dmf: selective formation of their monotadienyl glycosides. Eur J Org Chem: 2914–2922Google Scholar
  100. 100.
    Estrine B, Bouquillon S, Henin F, Muzart J (2005) Telomerization of butadiene with pentoses in water: selective etherifications. Green Chem 7:219–223CrossRefGoogle Scholar
  101. 101.
    Estrine B, Bouquillon S, Henin F, Muzart J (2007) Recycling in telomerization of butadiene with d-xylose: Pd(TPPTS)(n)-KF/Al2O3 as an active catalyst. Appl Organomet Chem 21:945–946CrossRefGoogle Scholar
  102. 102.
    Bouquillon S (2011) d-Xylose and l-arabinose-based surfactants: synthesis, reactivity and physico-chemical properties. C R Chim I14:716–725CrossRefGoogle Scholar
  103. 103.
    Hadad C, Damez C, Bouquillon S, Estrine B, Henin F, Muzart J, Pezron I, Komunjer L (2006) Neutral pentosides surfactants issued from the butadiene telomerization with pentoses: preparation and amphiphilic properties. Carbohydr Res 341:1938–1944CrossRefGoogle Scholar
  104. 104.
    Hill K, Gruber B, Weese KJ (1994) Palladium-catalyzed telomerization of butadiene with sucrose – a highly efficient approach to novel sucrose ethers. Tetrahedron Lett 35:4541–4542CrossRefGoogle Scholar
  105. 105.
    Hill K, Weese KJ (1993) Telomerization of a conjugated diene with a sugar as telogen. DE 4242467Google Scholar
  106. 106.
    Pennequin I, Meyer J, Suisse I, Mortreux A (1997) A further application of TPPTS in catalysis: efficient sucrose-butadiene telomerization using palladium catalysts in water. J Mol Catal A Chem 120:139–142CrossRefGoogle Scholar
  107. 107.
    Desvergnes-Breuil V, Pinel C, Gallezot P (2001) Green approach to substituted carbohydrates: telomerisation of butadiene with sucrose. Green Chem 3:175–177CrossRefGoogle Scholar
  108. 108.
    Donze U, Pinel C, Gallezot P, Taylor PL (2002) Palladium-catalyzed telomerization of butadiene with starch. Adv Synth Catal 344:906–910CrossRefGoogle Scholar
  109. 109.
    Mesnager J, Quettier C, Lambin A, Rataboul F, Pinel C (2009) Telomerization of butadiene with starch under mild conditions. ChemSusChem 2:1125–1129CrossRefGoogle Scholar
  110. 110.
    Mesnager J, Lambin A, Quettier C, Rataboul F, Pinel C (2010) Efficient telomerization of butadiene with starch in water: the role of the surfactant. Top Catal 53:1282–1284CrossRefGoogle Scholar
  111. 111.
    Mesnager J, Quettier C, Lambin A, Rataboul F, Perrard A, Pinel C (2010) Telomerization of butadiene with starch in water: role of the surfactants. Green Chem 12:475–482CrossRefGoogle Scholar
  112. 112.
    Kuntz E, Amgoune A, Lucas C, Godard G (2006) Palladium TPPTS catalyst in water: C-allylation of phenol and guaiacol with allyl alcohol and novel isomerisation of allyl ethers of phenol and guaiacol. J Mol Catal A Chem 244:124–138CrossRefGoogle Scholar
  113. 113.
    Damez C, Bouquillon S, Hénin F, Muzart J (2006) Reactivity of 1-phenoxy-2,7-octadiene under metathesis conditions. Eur J Org Chem 2006:4565–4567CrossRefGoogle Scholar
  114. 114.
    Behr A, Beckmann T, Nachtrodt H (2009) Multiphase telomerisation of butadiene with phenol: optimisation and scale-up in different reactor types. Dalton Trans: 6214–6219Google Scholar
  115. 115.
    Weigert FJ, Drinkard WC (1973) Nickel(0)-catalyzed addition to phenol to butadiene. J Org Chem 38:335–337CrossRefGoogle Scholar
  116. 116.
    Beger J, Duschek C, Füllbier H, Gaube W (1974) Dienoligomerisierung. Ix. Nickelkomplexkatalysierte dimerisierung und telomerisierung von butadien in hydroxylgruppenhaltigen medien. J Prakt Chem 316:26–42CrossRefGoogle Scholar
  117. 117.
    Estrine B, Soler R, Damez C, Bouquillon S, Henin F, Muzart J (2003) Recycling in telomerization of butadiene with methanol and phenol: Pd-KF/Al2O3 as an active heterogeneous catalyst system. Green Chem 5:686–689CrossRefGoogle Scholar
  118. 118.
    Krotz A, Vollmuller F, Stark G, Beller M (2001) Salt-free c-c coupling reactions of arenes: palladium-catalyzed telomerization of phenols. Chem Commun: 195–196Google Scholar
  119. 119.
    Sasaki Y, Inoue Y, Hashimoto H (1976) Reaction of carbon dioxide with butadiene catalysed by palladium complexes. Synthesis of 2-ethylidenehept-5-en-4-olide. J Chem Soc, Chem Commun: 605–606Google Scholar
  120. 120.
    Musco A, Perego C, Tartiari V (1978) Telomerization reactions of butadiene and CO2 catalyzed by phosphine Pd(0) complexes – (E)-2-ethylidenehept-6-en-5-olide and octadienyl esters of 2-ethylidenehepta-4,6-dienoic acid. Inorg Chim Acta 28:L147–L148CrossRefGoogle Scholar
  121. 121.
    Behr A, Juszak KD (1983) Palladium-catalyzed reaction of butadiene and carbon-dioxide. J Organomet Chem 255:263–268CrossRefGoogle Scholar
  122. 122.
    Braunstein P, Matt D, Nobel D (1988) Carbon-dioxide activation and catalytic lactone synthesis by telomerization of butadiene and CO2. J Am Chem Soc 110:3207–3212CrossRefGoogle Scholar
  123. 123.
    Behr A, Becker M (2006) The telomerisation of 1,3-butadiene and carbon dioxide: process development and optimisation in a continuous miniplant. Dalton Trans: 4607–4613Google Scholar
  124. 124.
    Behr A, Heite M (2000) Telomerization of carbon dioxide and 1,3-butadiene: process development in a miniplant. Chem Eng Technol 23:952–955CrossRefGoogle Scholar
  125. 125.
    Behr A, Bahke P, Klinger B, Becker M (2007) Application of carbonate solvents in the telomerisation of butadiene with carbon dioxide. J Mol Catal A Chem 267:149–156CrossRefGoogle Scholar
  126. 126.
    Hoberg H, Gross S, Milchereit A (1987) Nickel(0)-catalyzed production of a functionalized cyclopentanecarboxylic acid from 1,3-butadiene and CO2. Angew Chem Int Ed 26:571–572CrossRefGoogle Scholar
  127. 127.
    Holzhey N, Pitter S, Dinjus E (1997) Die heterogen katalysierte co-oligomerisation von 1,3-butadien und CO2 mit immobilisierten Palladiumkomplexen. J Organomet Chem 541:243–248CrossRefGoogle Scholar
  128. 128.
    Holzhey N, Pitter S (1999) Selective co-oligomerization of 1,3-butadiene and carbon dioxide with immobilized catalysts. J Mol Catal A Chem 146:25–36CrossRefGoogle Scholar
  129. 129.
    Pitter S, Dinjus E (1997) Phosphinoalkyl nitriles as hemilabile ligands: new aspects in the homogeneous catalytic coupling of CO2 and 1,3-butadiene. J Mol Catal A Chem 125:39–45CrossRefGoogle Scholar
  130. 130.
    Dzhemilev UM, Kunakova RV, Sidorova VV (1987) Joint catalytic activation of CO2 and NH2 in reaction with butadiene under the action of palladium complexes. Russ Chem Bull 36:362–364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pieter C. A. Bruijnincx
    • 1
    Email author
  • Robin Jastrzebski
    • 1
  • Peter J. C. Hausoul
    • 1
    • 2
  • Robertus J. M. Klein Gebbink
    • 2
  • Bert M. Weckhuysen
    • 1
    Email author
  1. 1.Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  2. 2.Organic Chemistry and Catalysis Group, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations