Ab Initio Molecular Dynamics Simulations of Ketocyanine Dyes in Organic Solvents

  • Andrzej Eilmes

Abstract

Ab initio Molecular Dynamics simulations of a ketocyanine dye in explicit solvents have been performed on a GP GPU Nvidia accelerators. The effects of single, double or dynamic precision used in calculations has been discussed. Accumulated Molecular Dynamics trajectories have been analyzed with the focus on orbital energies relevant for absorption spectra.

Keywords

Ab initio Molecular Dynamics GP GPU computations ketocyanine dyes explicit solvent modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reichardt, C.: Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 94, 2319–2358 (1994)CrossRefGoogle Scholar
  2. 2.
    Basu, J.K., Shannigrahi, M., Bagchi, S.: Lithium-Ion Ketocyanine Dye Interactions in the Ground and Excited States. J. Phys. Chem. A 110, 9051–9056 (2006)CrossRefGoogle Scholar
  3. 3.
    Basu, J.K., Shannigrahi, M., Bagchi, S.: Ground and Excited State Complexation of Ketocyanine Dyes with Alkaline Earth Metal Ions. J. Phys. Chem. A 111, 7066–7072 (2007)CrossRefGoogle Scholar
  4. 4.
    Sarkar, A., Kedia, N., Purkayastha, P., Bagchi, S.: Synthesis and spectroscopic investigation of a novel solvatochromic dye. J. Lumin. 131, 1731–1738 (2011)CrossRefGoogle Scholar
  5. 5.
    Klamt, A., Schüürmann, G.: COSMO – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin. Trans. 2, 799–805 (1993)Google Scholar
  6. 6.
    Miertuš, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981)CrossRefGoogle Scholar
  7. 7.
    Eilmes, A.: TDDFT study of absorption spectrum of ketocyanine dye complexes with inorganic ions: explicit solvent model. Theor. Chem. Acc. 127, 743–750 (2010)CrossRefGoogle Scholar
  8. 8.
    Eilmes, A.: A DFT/TDDFT study of Li +  and Mg2 +  interactions with ketocyanine dye. J. Mol. Struct. THEOCHEM 915, 141–148 (2009)CrossRefGoogle Scholar
  9. 9.
    Bosak, B., Komasa, J., Kopta, P., Kurowski, K., Mamoński, M., Piontek, T.: New Capabilities in QosCosGrid Middleware for Advanced Job Management, Advance Reservation and Co-allocation of Computing Resources – Quantum Chemistry Application Use Case. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 40–55. Springer, Heidelberg (2012)Google Scholar
  10. 10.
    Jadczyk, T., Malawski, M., Bubak, M., Roterman, I.: Examining Protein Folding Process Simulation and Searching for Common Structure Motifs in a Protein Family as Experiments in the GridSpace2 Virtual Laboratory. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 252–264. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    TeraChem v. 1.45, PetaChem, LLC, http://www.petachem.com
  12. 12.
    Luehr, N., Ufimtsev, I.S., Martinez, T.J.: Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs). J. Chem. Theor. Comp. 7, 949–954 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrzej Eilmes
    • 1
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations