Modeling of Multi-Converter FACTS in Power Flow Analysis

  • Xiao-Ping Zhang
  • Christian Rehtanz
  • Bikash Pal
Part of the Power Systems book series (POWSYS)

Abstract

This chapter discusses the recent developments in modeling of multi-functional multi-converter FACTS-devices in power flow analysis. The objectives of this chapter are:

1. to model not only the well-recognized two-converter shunt-series FACTS-device - UPFC, but also the latest multi-line FACTS-devices such as IPFC, GUPFC, VSC-HVDC and M-VSC-HVDC in power flow analysis,

2. to establish multi-control functional models of these multi-converter FACTS-devices to compare the control performance of these FACTS-devices.

3. to handle the small impedances of coupling transformers of FACTS-devices in power flow analysis.

Keywords

Power Flow Optimal Power Flow Unify Power Flow Controller Static Synchronous Series Compensator Reactive Power Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Song, Y.H., John, A.T.: Flexible AC Transmission Systems. IEE Press, London (1999)Google Scholar
  2. 2.
    Hingorani, N.G., Gyugyi, L.: Understanding FACTS – concepts and technology of flexible ac transmission systems. IEEE Press, New York (2000)Google Scholar
  3. 3.
    Fardanesh, B., Henderson, M., Shperling, B., Zelingher, S., Gyugyi, L., Schauder, C., Lam, B., Mounford, J., Adapa, R., Edris, A.: Convertible static compensator: application to the New York transmission system. In: CIGRE 14-103, Paris, France (1998)Google Scholar
  4. 4.
    Fardanesh, B., Shperling, B., Uzunovic, E., Zelingher, S.: Multi-converter FACTS devices: the generalized unified power flow controller (GUPFC). In: Proceedings of IEEE PES Summer Meeting, Seattle, USA (2000)Google Scholar
  5. 5.
    Zhang, X.P., Handschin, E., Yao, M.M.: Modeling of the generalized unified power flow controller in a nonlinear interior point OPF. IEEE Trans. on Power Systems 16(3), 367–373 (2001)CrossRefGoogle Scholar
  6. 6.
    Zhang, X.P.: Modelling of the interline power flow controller and generalized unified power flow controller in Newton power flow. IEE Proc. - Generation, Transmission and Distribution 150(3), 268–274 (2003)CrossRefGoogle Scholar
  7. 7.
    Schauder, C., Gernhardt, M., Stacey, E., Lemak, T., Gyugyi, L., Cease, T.W., Edris, A.: Development of a ±100MVar static condenser for voltage control of transmission systems. IEEE Transactions on Power Delivery 10(3), 1486–1493 (1995)CrossRefGoogle Scholar
  8. 8.
    Gyugyi, L., Shauder, C.D., Sen, K.K.: Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines. IEEE Transactions on Power Delivery 12(1), 406–413 (1997)CrossRefGoogle Scholar
  9. 9.
    Sen, K.K.: SSSC - Static synchronous series compensator: theory, modeling, and applications. IEEE Transactions on Power Delivery 13(1), 241–246 (1998)CrossRefGoogle Scholar
  10. 10.
    Gyugyi, L., Shauder, C.D., Williams, S.L., Rietman, T.R., Torgerson, D.R., Edris, A.: The unified power flow controller: a new approach to power transmission control. IEEE Transactions on Power Delivery 10(2), 1085–1093 (1995)CrossRefGoogle Scholar
  11. 11.
    Sen, K.K., Stacey, E.J.: UPFC – Unified power flow controller: theory, modeling and applications. IEEE Trans. on Power Delivery 13(4), 1453–1460 (1998)CrossRefGoogle Scholar
  12. 12.
    Zhang, X.P., Handschin, E.: Optimal power flow control by converter based FACTS controllers. In: 7th International Conference on AC-DC Power Transmission, November 28-30 (2001)Google Scholar
  13. 13.
    Zhang, X.P., Handschin, E., Yao, M.: Multi-control functional static synchronous compensator (STATCOM) in power system steady state operations. Journal of Electric Power Systems Research 72(3), 269–278 (2004)CrossRefGoogle Scholar
  14. 14.
    Zhang, X.P.: Advanced Modeling of the multi-control functional static synchronous series compensator (SSSC) in Newton power flow. IEEE Transactions on Power Systems 18(4), 1410–1416 (2003)CrossRefGoogle Scholar
  15. 15.
    Nabavi-Niaki, A., Iravani, M.R.: Steady state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Trans. on Power Systems 11(4), 1937–1943 (1996)CrossRefGoogle Scholar
  16. 16.
    Raman, M., Ahmed, M., Gutman, R., O’Keefe, R.J., Nelson, R.J., Bian, J.: UPFC application on the AEP system: planning considerations. IEEE Transactions on Power Systems 12(4), 1695–1701 (1997)CrossRefGoogle Scholar
  17. 17.
    Noroozian, M., Angquist, L., Ghandhari, M., Andersson, G.: Use of UPFC for optimal power flow control. IEEE Transactions on Power Delivery 12(4), 1629–1634 (1997)CrossRefGoogle Scholar
  18. 18.
    Fuerte, C.R., Acha, E., Ambriz-Perez, H.: A comprhensive Newton-Raphson UPFC model for the quadratic power flow solution of practical power networks. IEEE Transactions on Power Systems 15(1), 102–109 (2000)CrossRefGoogle Scholar
  19. 19.
    Handschin, E., Lehmkoester, C.: Optimal power flow for deregulated systems with FACTS-Devices. In: 13th PSCC, Trondheim, Norway, pp. 1270–1276 (1999)Google Scholar
  20. 20.
    Acha, E., Ambriz-Perez, H.: FACTS devices modelling in optimal power flow using Newton’s method. In: 13th PSCC, Trondheim, Norway, pp. 1277–1284 (1999)Google Scholar
  21. 21.
    Zhang, X.P., Handschin, E.: Advanced implementation of UPFC in a nonlinear interior point OPF. IEE Proceedings– Generation, Transmission & Distribution 148(3), 489–496 (2001)CrossRefGoogle Scholar
  22. 22.
    Lehmkoster, C.: Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Transactions on Power Delivery 17(2), 603–608 (2002)CrossRefGoogle Scholar
  23. 23.
    Schauder, C.D., Gyugyi, L., Lund, M.R., Hamai, D.M., Rietman, T.R., Torgerson, D.R., Edris, A.: Operation of the unified power flow controller (UPFC) under practical constraints. IEEE Trans. on Power Delivery 13, 630–637 (1998)CrossRefGoogle Scholar
  24. 24.
    Zhang, X.P.: Comprehensive modelling of the unified power flow controller for power system control. Electrical Engineering 88(4), 241–246 (2006)CrossRefGoogle Scholar
  25. 25.
    Asplund, G., Eriksson, K., Svensson, K.: DC transmission based on voltage source converters. In: CIGRE SC14 Colloquium, South Africa (1997)Google Scholar
  26. 26.
    Asplund, G.: Application of HVDC light to power system enhancement. In: Proceedings of IEEE 2000 PES Winter Meeting, Singapore (2000)Google Scholar
  27. 27.
    Schetter, F., Hung, H., Christl, N.: HVDC transmission system using voltage sourced converters – design and applications. In: Proceedings of IEEE 2000 PES Summer Meeting, Seattle, USA (2000)Google Scholar
  28. 28.
    Lasson, T., Edris, A., Kidd, D., Aboytes, F.: Eagle pass back-to-back tie: a dual purpose application of voltage source converter technology. In: Proceedings of IEEE 2001 PES Summer Meeting, Vancouver, Canada (2001)Google Scholar
  29. 29.
    Jiang, H., Ekstrom, A.: Multiterminal HVDC systems in urban areas of large cities. IEEE Transactions on Power Delivery 13(4), 1278–1284 (1998)CrossRefGoogle Scholar
  30. 30.
    Lu, W., Ooi, B.T.: DC overvoltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC). IEEE Trans. on Power Delivery 18(3), 915–920 (2003)CrossRefGoogle Scholar
  31. 31.
    Zhang, X.P.: Multiterminal voltage-sourced converter based HVDC models for power flow analysis. IEEE Transactions on Power Systems 18(4), 1877–1884 (2004)CrossRefGoogle Scholar
  32. 32.
    Hochgraf, C., Lasseter, R.H.: A transformer-less static synchronous compensator employing a multi-level inverter. IEEE Trans. on Power Delivery 12(2), 881–887 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiao-Ping Zhang
    • 1
  • Christian Rehtanz
    • 2
  • Bikash Pal
    • 3
  1. 1.University of BirminghamBirminghamUK
  2. 2.TU Dortmund UniversityDortmundGermany
  3. 3.Imperial College LondonLondonUK

Personalised recommendations