Algorithms and Software for Event Reconstruction in the RICH, TRD and MUCH Detectors of the CBM Experiment

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)


The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. Very fast event reconstruction is extremely important for CBM because of the huge amount of data which has to be handled. In this contribution the parallel event reconstruction algorithms in the Ring Imaging CHerenkov detector, Transition Radiation Detector and muon system are presented. Modern CPUs have two features, which enable parallel programming. First, the SSE technology allows using the SIMD execution model. Second, multi core CPUs enable to use multithreading. Both features were implemented in the reconstruction software. Simulation results show a significant speed up factor.


CBM experiment event reconstruction RICH TRD muon detector Kalman filter Hough Transform parallel algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amstel, C., et al.: The Review of Particle Physics. Phys. Lett. B 667 (2008)Google Scholar
  2. 2.
    Bass, S., et al.: Prog. Part. Nucl. Phys. 41, 255–370 (1998)CrossRefGoogle Scholar
  3. 3.
    Chernov, N.: J. Math. Im. Vi 27, 231–239 (2007)Google Scholar
  4. 4.
    Compressed Baryonic Matter Experiment. Technical Status Report (2005),
  5. 5.
    Frühwirth, R.: Nucl. Inst. and Meth. A 262, 444–450 (1987)CrossRefGoogle Scholar
  6. 6.
    Frühwirth, R., et al.: Data analysis techniques for high-energy physics. Cambridge Univ. Press (2000)Google Scholar
  7. 7.
    Gorbunov, S., et al.: Comp. Phys. Comm., 178, 374–383 (2008)CrossRefGoogle Scholar
  8. 8.
    Hough, P. V. C.: Method and Means for Recognizing Complex Patterns, US Patent: 3, 069, 654 (1962)Google Scholar
  9. 9.
    Höhne, C. et al.: Nucl. Phys. News 16(1), 19–23 (2006)Google Scholar
  10. 10.
    Höhne, C.: J. Phys. G: Nucl. Part. Phys., 35 104160 (2008)Google Scholar
  11. 11.
    Höhne, C. et al.: Nucl. Inst. and Meth. A, 595 187 (2008)Google Scholar
  12. 12.
    Höhne, C. et al.: Nucl. Inst. and Meth. A, 639 294 (2011)Google Scholar
  13. 13.
    Kisel, I. et al.: Nucl. Inst. and Meth. A, 566, 85–88 (2006)Google Scholar
  14. 14.
    Kalman, R.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME–Journal of Basic Engineering Series D 82, 35–45 (1960)CrossRefGoogle Scholar
  15. 15.
    Lebedev, A., Ososkov, G.: CBM note (2008),
  16. 16.
    Lebedev, A. et al.: PoS(ACAT2008), 068 (2008)Google Scholar
  17. 17.
    Lebedev, A., et al.: PEPAN Letters 7, No. 4(164), 473–482 (2010)Google Scholar
  18. 18.
    Lebedev, S., et al.: J. Phys.: Conf. Ser. 219, 032015 (2010)Google Scholar
  19. 19.
    Lebedev, S. et al.: PoS(ACAT2010), 060 (2010)Google Scholar
  20. 20.
    Press, W., et al.: Numerical Recipes: The Art of Scientific Computing. Cambridge Univ. Press (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  2. 2.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Justus Liebig-UniversitätGießenGermany

Personalised recommendations