From Quantum Mechanics to Quantum Chemistry

  • Salvatore Califano
Chapter

Abstract

The birth of quantum mechanics is rooted in the body of research that, at the end of the nineteenth century, dealt with the problem of electromagnetic radiation absorption and emission by an ideal absorbing-emitting system, the black body. The term “black body,” coined in 1860 by Gustav Kirchhoff (1824–1887), designates an ideal body able to emit and absorb all possible frequencies of the electromagnetic spectrum, without reflections. Kirchhoff’s experiments (Kirchhoff 1860) show that the radiation intensity emitted by a black body as a function of frequency depends on its temperature. In 1893, Wilhelm Wien (1864–1928) proved (Wien 1893) that the wavelength of the emission peak is a function of the inverse of the absolute temperature T (dotted curve in the figure below). In 1879, the Slovene physicist and poet Jožef Stefan (1835–1893) resumed research on black body emission. His experiments showed that the energy emitted by a black body per unit time and surface is proportional to the fourth power of the absolute temperature (Stefan 1879, 1881). His pupil, Ludwig Boltzmann, reached in 1884 the same conclusion on a purely theoretical basis, derived from thermodynamics principles. For this reason, the law that he proposed is known as the Stefan–Boltzmann law (Boltzmann 1884). In 1896, Wilhelm Wien computed the spectral density ρ(ν,T) (energy per unit of volume) emitted by a black body in the form
$$ \rho (\upsilon, T) = a{\upsilon^3}{e^{{ - b\upsilon /T}}} $$
where ν is the frequency and a and b are empirical constants (Wien 1896). Wien’s law provides a relatively accurate model of the black-body emission in the visible region. However, it strongly deviates from the experimental curve in the far-infrared region. A different theoretical model, providing better agreement in the far infrared but a worse one at higher frequencies, was derived by Lord Rayleigh, based on the energy equipartition theorem (Rayleigh 1900). According to this model, the spectral energy distribution should increase with the square of the frequency, resulting in a very poor fit with experimental data in the ultraviolet region of the spectrum. This phenomenon, called “ultraviolet catastrophe,” contrasted a very rapid increase in the theoretical curve with a decrease in the experimental one, which goes to zero asymptotically (sketched curve in figure). The “ultraviolet catastrophe,” an expression coined by Paul Ehrenfest in 1911, is the direct consequence of the classical energy equipartition principle, which assigns the same average energy, KT/2, to all degrees of freedom of a physical system. The difficulties of the classical approach were also highlighted by Lord Rayleigh (1905) and by James Jeans (1905), who independently arrived in 1905 at the expression
$$ \rho (\nu, T) = \frac{{2{\nu^2}KT}}{{{c^2}}} $$
confirming the absurd result obtained by Wien.

Keywords

Quantum Mechanic Atomic Orbital Diatomic Molecule Black Body Theoretical Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27:1208CrossRefGoogle Scholar
  2. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31:459CrossRefGoogle Scholar
  3. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, OxfordGoogle Scholar
  4. Allen MP, Tildesley DJ (1993) Computer simulation in chemical physics. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134CrossRefGoogle Scholar
  6. Andrews Th (1869) The Bakerian lecture: on the continuity of the gaseous and liquid states of matter. Philos Trans R Soc Lond 159:575–590CrossRefGoogle Scholar
  7. Barnett MP, Coulson CA (1951a) Evaluation of integrals occurring in the theory of molecular structure, Part I: basic Functions. Philos Trans R Soc Lond A 243:221–233CrossRefGoogle Scholar
  8. Barnett MP, Coulson CA (1951b) Evaluation of integrals occurring in the theory of molecular structure, Part II: overlap, resonance, Coulomb, hybrid and other two-centre integrals. Philos Trans R Soc Lond A 243:234–249CrossRefGoogle Scholar
  9. Bartlett N (1962) Xenon hexafluoroplatinate Xe+[PtF6]-. Proc Chem Soc Lond 6:218Google Scholar
  10. Bartlett RJ (1989) Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J Phys Chem (Feature Article) 93:1697–1708CrossRefGoogle Scholar
  11. Berne BJ, Jortner J, Gordon R (1967) Vibrational relaxation of diatomic molecules in gases and liquids. J Chem Phys 47:1600CrossRefGoogle Scholar
  12. Berne BJ, Pechukas P, Harp GD (1968) Molecular reorientation in liquids and gases. J Chem Phys 49:3125CrossRefGoogle Scholar
  13. Birge RT (1926) The structure of molecules. Nature 117:300CrossRefGoogle Scholar
  14. Bishop M, Berne BJ (1974) Molecular dynamics of one-dimensional hard rods. J Chem Phys 60:893CrossRefGoogle Scholar
  15. Boltzmann L (1884) Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Ann Phys Chem 22:291–294Google Scholar
  16. Boltzmann L (1897) Zu Hrn Zermelos Abhandlung Über die mechanische Erklärung irreversibler Vorgänge. Ann Phys 60:392–398CrossRefGoogle Scholar
  17. Bohr N, Kramers HA, Slater JC (1924) Über die quantentheorie der strahlung. Z Phys 24:69–87CrossRefGoogle Scholar
  18. Born M, Jordan P (1925) Zur Quantenmechanik. Z Phys 34:858CrossRefGoogle Scholar
  19. Born M, Heisenberg W, Jordan P (1926) Zür Quantenmechanik II. Z Phys 35:557–615CrossRefGoogle Scholar
  20. Born M (1926a) Quantenmechanik der Stoßvorgänge. Z Phys 37:863CrossRefGoogle Scholar
  21. Born M (1926b) Quantenmechanik der Stoßvorgänge. Z Phys 38:803CrossRefGoogle Scholar
  22. Born M (1926c) Zur Wellenmechanik der Stossvorgänge. Göttinger Nachr Math Phys Kl 146–160Google Scholar
  23. Born M, Oppenheimer R (1927) Zur Quantentheorie der Molekeln. Ann Phys 84:457–484CrossRefGoogle Scholar
  24. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  25. Burrau O (1927) Berechnung des Energieeigenwertes des Wasserstoffmolekel-Ions H2+ im Normalzustand. Det Kongelige Daske Videnskabernes Selskab, Mathematisk-fysiske Meddeelelser, Kobenhavn, bind 7, 14, 1–18Google Scholar
  26. Buckingham AD, Utting BD (1970) Intermolecular forces. Annu Rev Phys Chem 21:287–316CrossRefGoogle Scholar
  27. Buckingham AD, Fowler PW, Stone AJ (1986) Electrostatic predictions of shapes and properties of van der Waals molecules. Int Rev Phys Chem 5(2/3):107–114CrossRefGoogle Scholar
  28. Burgess AW, Shipman LL, Scheraga HA (1975) A new approach to empirical intermolecular and conformational potential energy functions. II. Applications to crystal packing, rotational barriers and conformational analysis. Proc Natl Acad Sci USA 72:854–858CrossRefGoogle Scholar
  29. Califano S (1969) Force fields of large molecules. Pure Appl Chem 18:353, ButterworthsCrossRefGoogle Scholar
  30. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  31. Casimir HBG, Polder D (1948) The influence of retardation on the London–van der Waals forces. Phys Rev 73:360CrossRefGoogle Scholar
  32. Cizek J (1966) On the correlation problem in atomic and molecular systems. J Chem Phys 45:4256CrossRefGoogle Scholar
  33. Compton AH (1923) A quantum theory of the scattering of X rays by light elements. Phys Rev 21(5):483CrossRefGoogle Scholar
  34. Coulson CA (1937a) The electronic structure of methane. Trans Faraday Soc 33:388–398CrossRefGoogle Scholar
  35. Coulson CA (1937b) The evaluation of certain integrals occurring in studies of molecular structure. Math Proc Camb Philos Soc 33:104–110CrossRefGoogle Scholar
  36. Coulson CA, Longuet-Higgins HC (1947) The electronic structure of conjugated systems. I. General theory. Proc R Soc A 191:39CrossRefGoogle Scholar
  37. Coulson CA (1960) Present state of molecular structure calculations. Rev Mod Phys 32:170–177CrossRefGoogle Scholar
  38. Davidson ER (1974) Configuration-interaction description of electron correlation. In: Daudel R, Pullman B (eds) The world of quantum chemistry. Reidel, Dordrecht/Holland, pp 17–30CrossRefGoogle Scholar
  39. Davisson C, Germer LH (1927) Reflection of electrons by a crystal of nickel. Nature 119:558–560CrossRefGoogle Scholar
  40. De Broglie L (1924) Ondes et quanta. CR Acad Sci 177:507Google Scholar
  41. Debye P (1920) Die van der Waalsschen Kohäsionkräfte. Phys Z 21:178Google Scholar
  42. Debye P (1921) Molekularkräfte und ihre Elektrische Deutung. Phys Z 22:302Google Scholar
  43. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinungen. Phys Z 24:185–206Google Scholar
  44. Dirac PAM (1925) The fundamental equations of quantum mechanics. Proc R Soc Lond A 109:642CrossRefGoogle Scholar
  45. Dirac PAM (1930) The principles of quantum mechanics. Clarendon Press, OxfordGoogle Scholar
  46. Eckart C (1935) Some studies concerning rotating axes and polyatomic molecules. Phys Rev 46:383–387CrossRefGoogle Scholar
  47. Einstein A (1906a) Zur theorie der Lichterzeugung und Lichtabsorption. Ann Phys 20:199CrossRefGoogle Scholar
  48. Einstein A (1906b) Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys 22:180–190CrossRefGoogle Scholar
  49. Einstein A (1907) Berichtigung zu meiner Arbeit: Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys 22:800CrossRefGoogle Scholar
  50. Eisenschitz R, London F (1930) Über das Verhältnis der van der Waalsschen kräfte zu den homöopolaren bindungskräften. Z Phys 60:491CrossRefGoogle Scholar
  51. Fermi E (1928) Eine statistische Begründung zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendungen auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79CrossRefGoogle Scholar
  52. Fermi E, Pasta J, Ulam S (1965) Studies of nonlinear problems. I. Los Alamos report LA-1940, published later. In: Segré E (ed) Collected papers of Enrico Fermi. University of Chicago Press, ChicagoGoogle Scholar
  53. Fock V (1930) Näherungsmethode zür Lösung des Quantenmechanischen Mehrkörperproblems. Z Phys 61:126CrossRefGoogle Scholar
  54. Fock V (1932) Konfigurationsraum und zweite quantelung. Z Phys 75:622–647CrossRefGoogle Scholar
  55. Fischer CF (1977) The Hartree–Fock method for atoms: a numerical approach. Wiley, New YorkGoogle Scholar
  56. Fues E (1922) Die Berechnung wasserstoffunähnlicher Spektren aus Zentralbewegungen der Elektronen. I. Z Phys 11:364–378CrossRefGoogle Scholar
  57. Gelin BR, Karplus M (1979) Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. Biochemistry 18:1256CrossRefGoogle Scholar
  58. Gaunt JA (1928) Theory of Hartree’s atomic fields. Proc Camb Philos Soc 24:328CrossRefGoogle Scholar
  59. Gaunt JA (1929) Triplets of helium. Philos Trans R Soc Lond 228:151–196CrossRefGoogle Scholar
  60. Hartree DR (1923) On some approximate numerical applications of Bohr’s theory of spectra. Proc Camb Philos Soc 21:625Google Scholar
  61. Hartree DR (1928a) The wave mechanics of an atom with a non-Coulomb central field. Part I-theory and methods. Proc Camb Philos Soc 24:89–110CrossRefGoogle Scholar
  62. Hartree DR (1928b) The wave mechanics of an atom with a non-Coulomb central field. Part II. Some results and discussion. Proc Camb Philos Soc 24:111CrossRefGoogle Scholar
  63. Hartree DR, Hartree W (1935) Self-consistent field, with exchange, for beryllium. Proc R Soc Lond A150:9–33Google Scholar
  64. Heisenberg W (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z Phys 33:879CrossRefGoogle Scholar
  65. Heisenberg W (1926) Quantenmechanik. Naturwissenschaften 14:989–994CrossRefGoogle Scholar
  66. Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z Phys 43:172CrossRefGoogle Scholar
  67. Heitler W, London F (1927) Wechselwirkung neutraler Atome und homöpolare Bindung nach der Quantenmechanik. Z Phys 44:455–472CrossRefGoogle Scholar
  68. Herzberg G (1929) The heat of dissociation of oxygen. Z Phys Chem 4B:223Google Scholar
  69. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  70. Hoffmann R (1963) An extended Hückel theory. I. Hydrocarbons. J Chem Phys 39:1397CrossRefGoogle Scholar
  71. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864CrossRefGoogle Scholar
  72. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  73. Hoppe R (1964) Valence compounds of the inert gases. Angew Chem Int Ed Engl 3:538CrossRefGoogle Scholar
  74. Hückel E (1930) Quantentheorie der Doppelbindung. Z Phys 60:423CrossRefGoogle Scholar
  75. Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem. Z Phys 70:204–286CrossRefGoogle Scholar
  76. Hund F (1926) Zur Deutung einiger Erscheinungen in den Molekelspektren. Z Phys 36:657CrossRefGoogle Scholar
  77. Hund F (1927a) Zur Deutung der Molekelspektren. Z Phys I 40:742–764, II, 42:93–120, III, 43:805–826Google Scholar
  78. Hund F (1927b) Symmetriecharaktere von Termen bei Systemen mit gleichen Partikeln in der Quantenmechanik. Z Phys 43:788CrossRefGoogle Scholar
  79. James HM, Coolidge AS (1933) The ground state of the hydrogen molecule. J Chem Phys 1:825CrossRefGoogle Scholar
  80. Jeans JH (1905) On the partition of energy between matter and aether. Philos Mag 10:91CrossRefGoogle Scholar
  81. Keesom WH (1920) Quadrupole moments of the oxygen and nitrogen and nitrogen molecules. Proc Koninkl Nederland Akad Wetenschap 23:939Google Scholar
  82. Keesom WH (1921a) Van der Waals attractive force. Phys Z 22:129–141Google Scholar
  83. Keesom WH (1921b) Van der Waals attractive force. Phys Z 22:643–644Google Scholar
  84. Kirchhoff G (1860) Über das Verhältnis zwischen dem Emissionsvermöogen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann Phys Chem 109:275–301Google Scholar
  85. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A1 140:133Google Scholar
  86. Lennard-Jones JE (1924a) On the determination of molecular fields. I. from the variation of the viscosity of a gas with temperature. Proc R Soc Lond A106:441–462Google Scholar
  87. Lennard-Jones JE (1924b) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc Lond A106:463–477Google Scholar
  88. Lennard-Jones JE (1929) The electronic structure of some diatomic molecules. Trans Faraday Soc 25:668–686CrossRefGoogle Scholar
  89. Lifson S, Warshel A (1968) A consistent force field for calculation on conformations, vibrational spectra and enthalpies of cycloalkanes and n-alkane molecules. J Phys Chem 49:5116CrossRefGoogle Scholar
  90. London F (1930a) Theorie und systematik der molekularkrafte. Z Phys 63:245–279CrossRefGoogle Scholar
  91. London F (1930b) Über einige Eigenschaften und Anwendungen der Molekularkräften. Z Phys Chem B11:222–251Google Scholar
  92. London F (1930c) Properties and applications of molecular forces. Z Phys Chem B 11:222–223Google Scholar
  93. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8–26CrossRefGoogle Scholar
  94. Löwdin P-O III (1955a) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1508CrossRefGoogle Scholar
  95. Löwdin P-O (1955b) Extension of the Hartree–Fock scheme to include degenerate systems and correlation effects. Phys Rev 97:1509–1520CrossRefGoogle Scholar
  96. Löwdin P-O (1959) Correlation problem in many-electronic quantum mechanics. I. Review of different approaches and discussion of some current ideas. Adv Chem Phys 2:207–322CrossRefGoogle Scholar
  97. Martyna GJ, Tuckerman ME, Klein ML (1992) Nose–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635CrossRefGoogle Scholar
  98. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590CrossRefGoogle Scholar
  99. McWeeny R (1967) Nature of electron correlation in molecules. Int J Quant Chem Symp 1:351–359CrossRefGoogle Scholar
  100. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  101. Mie G (1903) Zur kinetischen Theorie der einatomigen Körper. Ann Phys 316:657–697CrossRefGoogle Scholar
  102. Moffitt WE, Coulson CA (1948) The electronic structure and bond lengths of coronene and pyrene. Proc Phys Soc 60:309CrossRefGoogle Scholar
  103. Moffitt W (1951) Atoms in molecules. Proc R Soc Lond A210:245Google Scholar
  104. Moffitt W, Moscowitz A, Klyne W, DJerassi C (1961) Structure and the optical rotatory dispersion of saturated ketones. J Am Chem Soc 83:4013–4018CrossRefGoogle Scholar
  105. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  106. Mulliken RS (1926) Systematic relations between electronic structure and band-spectrum structure in diatomic molecules, III: molecule formation and molecular structure. Proc Natl Acad Sci 12:144–151, 338CrossRefGoogle Scholar
  107. Mulliken RS (1928) The assignment of quantum numbers for electrons in molecules. I. Phys Rev 32:186–222CrossRefGoogle Scholar
  108. Mulliken RS (1930) The interpretation of band spectra. Parts I, IIa, IIb. Rev Mod Phys 2:60–115CrossRefGoogle Scholar
  109. Mulliken RS (1932) Electronic structures of polyatomic molecules and valence. Phys Rev 40:55–71CrossRefGoogle Scholar
  110. Mulliken RS (1937) Solved and unsolved problems in the spectra of diatomic molecules. J Chem Phys 41:5–45CrossRefGoogle Scholar
  111. Nooijen M, Bartlett RJ (1995) Equation of motion coupled cluster method for electron attachment. J Chem Phys 102:3629–3647CrossRefGoogle Scholar
  112. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRefGoogle Scholar
  113. Nosé S (1991) Constant temperature molecular dynamics methods, progress of theoretical physics supplement 103 (Molecular Dynamics Simulations, Nosé S (ed)), pp 1–46Google Scholar
  114. Oddershede J, Jørgensen P, Yeager DL (1984) Polarization propagator methods in atomic and molecular calculations. Comput Phys Rep 2:33CrossRefGoogle Scholar
  115. Pais A (1991) Niels Bohr’s times: in physics, philosophy, and polity. Oxford University Press, OxfordGoogle Scholar
  116. Pariser R, Parr R (1953) Semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I. J Chem Phys 21:466, 767CrossRefGoogle Scholar
  117. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  118. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182CrossRefGoogle Scholar
  119. Pauling L (1928) The application of the quantum mechanics to the structure of the hydrogen molecule and the hydrogen molecule-ion and to related problems. Chem Rev 5:173–213CrossRefGoogle Scholar
  120. Pauling L (1931a) Quantum mechanics and the chemical bond. Phys Rev 37:1185–1186CrossRefGoogle Scholar
  121. Pauling L (1931b) The nature of the chemical bond. J Am Chem Soc 53:1367–1400CrossRefGoogle Scholar
  122. Pauling L (1931c) The nature of the chemical bond. II. J Am Chem Soc 53:3225–3237CrossRefGoogle Scholar
  123. Pauling L (1932a) The nature of the chemical bond. III. J Am Chem Soc 54:988–1003CrossRefGoogle Scholar
  124. Pauling L (1932b) The nature of the chemical bond. IV. J Am Chem Soc 54:3570–3582CrossRefGoogle Scholar
  125. Pauling L, Wheland GW (1933) The nature of the chemical bond. V. J Chem Phys 1:362–374CrossRefGoogle Scholar
  126. Pauling L, Wilson EB (1935) Introduction to quantum mechanics with applications to chemistry. Dover, New YorkGoogle Scholar
  127. Pauling L (1939) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, IthacaGoogle Scholar
  128. Planck M (1900) Entropie und temperatur strahlender Wärme. Ann Phys 1:719CrossRefGoogle Scholar
  129. Planck M (1901) Über das Gesetz der Energieverteilung im Normalspectrum. Ann Phys 4:553CrossRefGoogle Scholar
  130. Planck M, Wood RW (1931) Archives of the centre for the history and philosophy of physics of the American Institute of Physics in New York City, 7 Oct 1931Google Scholar
  131. Poincaré H (1889) Sur les tentatives d’explication mecanique des principes de la thermodynamique. CR Acad Sci Paris 108:550–553Google Scholar
  132. Pople JA (1953) Electron interaction in unsaturated hydrocarbons. Trans Faraday Soc 49:1375CrossRefGoogle Scholar
  133. Pople JA, Segal GA (1966) Approximate self-consistent molecular orbital theory III. CNDO results for AB2 and AB3 systems. J Chem Phys 44:3289CrossRefGoogle Scholar
  134. Rayleigh JWS (1900) The law of partition of kinetic energy. Philos Mag 49:98–118CrossRefGoogle Scholar
  135. Rayleigh JWS (1905) The dynamical theory of gases and of radiation. Nature 72:54CrossRefGoogle Scholar
  136. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89Google Scholar
  137. Roothaan CCJ (1960) Self-consistent field theory for open shells of electronic systems. Rev Mod Phys 32:179Google Scholar
  138. Sayvetz A (1939) The kinetic energy of polyatomic molecules. J Chem Phys 7:383–389CrossRefGoogle Scholar
  139. Schachtschneider JH, Snyder RG (1963) Vibrational analysis of the n-paraffins – II: normal co-ordinate calculations. Spectrochim Acta 19:117–168CrossRefGoogle Scholar
  140. Schrödinger E (1926a) Quantizierung als Eigenwertproblem (Erste Mitteilung). Ann Phys 79:361CrossRefGoogle Scholar
  141. Schrödinger E (1926b) Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann Phys 79:489CrossRefGoogle Scholar
  142. Schrödinger E (1926c) Quantisierung als Eigenwertproblem (Dritte Mitteilung). Ann Phys 80:437CrossRefGoogle Scholar
  143. Schrödinger E (1927) Quantisierung als Eigenwertproblem (Vierte Mitteilung). Ann Phys 81:109Google Scholar
  144. Shimanouchi T (1972) Tables of molecular vibrational frequencies. National Bureau of Standards, WashingtonGoogle Scholar
  145. Simonetta M (1968) Forty years of valence bond theory. In: Rich A, Davidson N (eds) Structural chemistry and molecular biology. Freeman, San FranciscoGoogle Scholar
  146. Sinanoglu O (1961) Theory of electron correlation in atoms and molecules. Proc R Soc Lond A 260:379CrossRefGoogle Scholar
  147. Slater JC (1928) The self-consistent field and the structure of atoms. Phys Rev 32:339–348CrossRefGoogle Scholar
  148. Slater JC (1929) The theory of complex spectra. Phys Rev 34:1293CrossRefGoogle Scholar
  149. Slater JC (1931) Directed valence in polyatomic molecules. Phys Rev 37:481–489CrossRefGoogle Scholar
  150. Slater JC, Kirkwood JG (1931) The van der Waals forces in gases. Phys Rev 37:682–697CrossRefGoogle Scholar
  151. Stefan J (1879) Über die Beziehung zwischen der Wärmestrahlung und der Temperatur. In: Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften, vol 79. Wien, pp 391–428Google Scholar
  152. Stefan J (1881) Über die Beziehung zwischen der Wärmestrahlung und der Temperatur. J Phys Theor Appl 10:317–319CrossRefGoogle Scholar
  153. Stillinger FH, Rahman A (1974) Improved simulation of liquid water by molecular dynamics. J Chem Phys 60:1545–1557CrossRefGoogle Scholar
  154. Swirles B (1935) The relativistic self-consistent field. Proc R Soc Lond A 152(877):625–649CrossRefGoogle Scholar
  155. Swirles B (1936) The relativistic interaction of two electrons in the self-consistent field method. Proc R Soc A 157(892):680–696CrossRefGoogle Scholar
  156. Swirles B, Hartree DR, Hartree W (1939) Self-consistent field, including exchange and superposition of configurations, with some results for oxygen. Philos Trans R Soc A 238:229CrossRefGoogle Scholar
  157. Thomas LH (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542CrossRefGoogle Scholar
  158. Thomson GP, Reid A (1927) Diffraction of cathode rays by a thin film. Nature 119:890CrossRefGoogle Scholar
  159. Wang SC (1927a) The diamagnetic susceptibility of hydrogen molecule and of helium in the new quantum mechanics. Proc Natl Acad Sci 13(12):798–800CrossRefGoogle Scholar
  160. Wang SC (1927b) The mutual energy of two hydrogen atoms. Phys Z 28:663Google Scholar
  161. Wichelhaus H (1869) Die Hypothesen über die Constitution des Benzols. Berichte 2:197–199Google Scholar
  162. Wien W (1893) Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie. Sitzungsberichte der preussischer Akademie 55–62, Sitzungsberichte, 9. Februar1893Google Scholar
  163. Wien W (1896) Über die Energievertheilung im Emissionsspectrum eines schwarzen Körpers. Ann Phys Chem 294:662–669Google Scholar
  164. Zerbi G, Gussoni IM (1966) Transferability of valence force constants from “Overlay” calculations of syndiotactic 1,2poly(butadiene). Spectrochim Acta 22:211CrossRefGoogle Scholar
  165. Zermelo E (1896a) Über enien Satz der Dynamik und die mechanische Wärmetheorie. Ann Phys 57:485–494CrossRefGoogle Scholar
  166. Zermelo E (1896b) Über mechanische Erklärungen irreversibler Vorgänge. Ann Phys 59:4793–4801Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Salvatore Califano
    • 1
  1. 1.Laboratorio Europeo di Spettroscopie nonUniversitá di FirenzeFirenzeItaly

Personalised recommendations