Probing Electronic Transport of Individual Nanostructures with Atomic Precision

Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Accessing individual nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Local electrical contacts, namely nanoelectrodes, are often fabricated by using top-down lithography and chemical etching techniques. These processes however lack atomic precision and introduce the possibility of contamination. Here, we review recent reports on the application of a field-induced emission process in the fabrication of local contacts onto individual nanowires and nanotubes with atomic spatial precision. In this method, gold nanoislands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable process to ensure both electrically conductive and mechanically reliable contacts. The applicability of the technique has been demonstrated in a wide variety of nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. These local contacts bridge the nanostructures and the transport probes, allowing for the measurements of both electrical transport and scanning tunneling microscopy on the same nanostructures in situ. The direct correlation between electronic and transport properties and atomic structures can be explored on individual nanostructures at the unprecedented atomic level.

Keywords

Electronic transport Nanowire Nanotube Atomic wire Nano contact Four probe measurement Scanning tunneling microscope 

References

  1. 1.
    de Jonge, N., Lamy, Y., Kaiser, M.: Controlled mounting of individual multiwalled carbon nanotubes on support tips. Nano Lett. 3, 1621–1624 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Decossas, S., et al.: Nanomanipulation by atomic force microscopy of carbon nanotubes on a nanostructured surface. Surf. Sci. 543, 57–62 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Duan, X., Zhang, J., Ling, X., Liu, Z.: Nano-welding by scanning probe microscope. J. Am. Chem. Soc. 127, 8268–8269 (2005)CrossRefGoogle Scholar
  4. 4.
    Grill, L., et al.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Wang, Y. G., et al.: Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition. Nanotechnology 17, 6011 (2006)Google Scholar
  6. 6.
    Wilms, M., Conrad, J., Vasilev, K., Kreiter, M., Wegner, G.: Manipulation and conductivity measurements of gold nanowires. Appl. Surf. Sci. 238, 490–494 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Matsui, S., et al.: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 18, 3181 (2000)Google Scholar
  8. 8.
    Kent, A.D., Shaw, T.M., von Molnar, S., Awschalom, D.D.: Growth of high aspect ratio nanometer-scale magnets with chemical vapor deposition and scanning tunneling microscopy. Science 262, 1249–1252 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Sato, A., Tsukamoto, Y.: Nanometre-scale recording and erasing with the scanning tunnelling microscope. Nature 363, 431–432 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Qin, S., et al.: Contacting nanowires and nanotubes with atomic precision for electronic transport. Appl. Phys. Lett. 100, 103103 (2012)Google Scholar
  11. 11.
    Qin, S., et al.: Correlating electronic transport to atomic structures in self-assembled quantum wires. Nano. Lett. 12, 938–942 (2012). doi: 10.1021/nl24003s Google Scholar
  12. 12.
    Kim, T.-H., et al.: A cryogenic quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research. Rev. Sci. Instrum. 78, 123701 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Mamin, H.J., Guethner, P.H., Rugar, D.: Atomic emission from a gold scanning-tunneling-microscope tip. Phys. Rev. Lett. 65, 2418 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    Bessho, K., Hashimoto, S.: Fabricating nanoscale structures on Au surface with scanning tunneling microscope. Appl. Phys. Lett. 65, 2142–2144 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Koyanagi, H., Hosaka, S., Imura, R., Shirai, M.: Field evaporation of gold atoms onto a silicon dioxide film by using an atomic force microscope. Appl. Phys. Lett. 67, 2609–2611 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Park, J.Y., Phaneuf, R.J.: Polarity dependence in pulsed scanning tunneling microscopy fabrication and modification of metal nanodots on silicon. J. Appl. Phys. 92, 2139–2143 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Pumarol, M. E. et al. Controlled deposition of gold nanodots using non-contact atomic force microscopy. Nanotechnology 16, 1083 (2005)Google Scholar
  18. 18.
    Yang, Z., Hoffmann, S., Lichtenwalner, D.J., Krim, J., Kingon, A.I.: Resolution of the transfer direction of field-evaporated gold atoms for nanofabrication and microelectromechanical system applications. Appl. Phys. Lett. 98, 044102 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Chang, C.S., Su, W.B., Tsong, T.T.: Field evaporation between a gold tip and a gold surface in the scanning tunneling microscope configuration. Phys. Rev. Lett. 72, 574 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Pascual, J.I., et al.: Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Harrison, B.C., Ryan, P., Boland, J.J.: STM and DFT study of the Gd wetting layer reconstructions on the Si(0 0 1)-2 × 1 surface. Surf. Sci. 582, 79–89 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, B.Z., Nogami, J.: An STM study of the Si(0 0 1) (2 × 7)-Gd. Dy surface. Surf. Sci. 540, 136–144 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Yeom, H.W., Kim, Y.K., Lee, E.Y., Ryang, K.D., Kang, P.G.: Robust one-dimensional metallic band structure of silicide nanowires. Phys. Rev. Lett. 95, 205504 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Kim, T.-H., et al.: Large discrete resistance jump at grain boundary in copper nanowire. Nano Lett. 10, 3096–3100 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Rathmell, A.R., Bergin, S.M., Hua, Y.-L., Li, Z.-Y., Wiley, B.J.: The growth mechanism of copper nanowires and their properties in flexible transparent conducting films. Adv. Mater. 22, 3558–3563 (2010)CrossRefGoogle Scholar
  26. 26.
    Hellstrom, S.L., Lee, H.W., Bao, Z.: Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. ACS Nano 3, 1423–1430 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryCenter for Nanophase Materials SciencesOak RidgeUSA

Personalised recommendations